Axial–equatorial equilibrium in substituted cyclohexanes: a DFT perspective on a small but complex problem

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/141063
Información del item - Informació de l'item - Item information
Título: Axial–equatorial equilibrium in substituted cyclohexanes: a DFT perspective on a small but complex problem
Autor/es: Li, Hanwei | Brémond, Éric | Sancho-Garcia, Juan-Carlos | Pérez-Jiménez, Ángel J. | Scalmani, Giovanni | Frischd, Michael J. | Adamo, Carlo
Grupo/s de investigación o GITE: Química Cuántica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física
Palabras clave: Axial–equatorial equilibrium | Substituted cyclohexanes | DFT approaches
Fecha de publicación: 15-feb-2024
Editor: Royal Society of Chemistry
Cita bibliográfica: Physical Chemistry Chemical Physics. 2024, 26: 8094-8105. https://doi.org/10.1039/D3CP06141H
Resumen: In Chemistry, complexity is not necessarily associated to large systems, as illustrated by the textbook example of axial–equatorial equilibrium in mono-substituted cyclohexanes. The difficulty in modelling such a simple isomerization is related to the need for reproducing the delicate balance between two forces, with opposite effects, namely the attractive London dispersion and the repulsive steric interactions. Such balance is a stimulating challenge for density-functional approximations and it is systematically explored here by considering 20 mono-substituted cyclohexanes. In comparison to highly accurate CCSD(T) reference calculations, their axial–equatorial equilibrium is studied with a large set of 48 exchange–correlation approximations, spanning from semilocal to hybrid to more recent double hybrid functionals. This dataset, called SAV20 (as Steric A-values for 20 molecules), allows to highlight the difficulties encountered by common and more original DFT approaches, including those corrected for dispersion with empirical potentials, the 6-31G*-ACP model, and our cost-effective PBE-QIDH/DH-SVPD protocol, in modeling these challenging interactions. Interestingly, the performance of the approaches considered in this contribution on the SAV20 dataset does not correlate with that obtained with other more standard datasets, such as S66, IDISP or NC15, thus indicating that SAV20 covers physicochemical features not already considered in previous noncovalent interaction benchmarks.
Patrocinador/es: Funded by the European Union (ERC, project MaMA, no. 101097351). E. B. gratefully acknowledges ANR (Agence Nationale de la Recherche) for the financial support of this work through the MoMoPlasm project (ANR-21-CE29-0003). He thanks also ANR and CGI (Commissariat à l’Investissement d’Avenir) for their financial support of this research through Labex SEAM (Science and Engineering for Advanced Materials and devices) ANR-10-LABX-096, ANR-18-IDEX-000. H. L. acknowledges financial support from the China Scholarship Council (grant no. 201908310062).
URI: http://hdl.handle.net/10045/141063
ISSN: 1463-9076 (Print) | 1463-9084 (Online)
DOI: 10.1039/D3CP06141H
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © the Owner Societies 2024
Revisión científica: si
Versión del editor: https://doi.org/10.1039/D3CP06141H
Aparece en las colecciones:Investigaciones financiadas por la UE
INV - QC - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailLi_etal_2024_PhysChemChemPhys_final.pdfVersión final (acceso restringido)1,14 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.