Thrust fault modeling and Late-Noachian lithospheric structure of the circum-Hellas region, Mars

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/140306
Información del item - Informació de l'item - Item information
Título: Thrust fault modeling and Late-Noachian lithospheric structure of the circum-Hellas region, Mars
Autor/es: Egea-González, Isabel | Jiménez-Díaz, Alberto | Parro, Laura M. | López, Valle | Williams, Jean-Pierre | Ruiz, Javier
Grupo/s de investigación o GITE: Astronomía y Astrofísica
Centro, Departamento o Servicio: Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías
Palabras clave: Mars | Mars, Interior | Tectonics | Thermal histories
Fecha de publicación: 29-ene-2017
Editor: Elsevier
Cita bibliográfica: Icarus. 2017, 288: 53-68. https://doi.org/10.1016/j.icarus.2017.01.028
Resumen: The circum-Hellas area of Mars borders Hellas Planitia, a giant impact ∼4.0–4.2 Ga old making the deepest and broadest depression on Mars, and is characterized by a complex pattern of fracture sets, lobate scarps, grabens, and volcanic plains. The numerous lobate scarps in the circum-Hellas region mainly formed in the Late Noachian and, except Amenthes Rupes, have been scarcely studied. In this work, we study the mechanical behavior and thermal structure of the crust in the circum-Hellas region at the time of lobate scarp formation, through the modeling of the depth of faulting beneath several prominent lobate scarps. We obtain faulting depths between ∼13 and 38 km, depending on the lobate scarp and accounting for uncertainty. These results indicate low surface and mantle heat flows in Noachian to Early Hesperian times, in agreement with heat flow estimates derived from lithospheric strength for several regions of similar age on Mars. Also, faulting depth and associate heat flows are not dependent of the local crustal thickness, which supports a stratified crust in the circum-Hellas region, with heat-producing elements concentrated in an upper layer that is thinner than the whole crust.
Patrocinador/es: The work by J.R. was supported by a contract Ramón y Cajal at the Universidad Complutense de Madrid (UCM). The work by L.M.P. was supported by a FPU2014 grant from the Ministerio de Educación, Cultura y Deporte of Spain. The work by J.-P.W. was supported by a NASA Mars Data Analysis Program Grant No. NNX14AM12G. This work has received funding from the European Union’s Horizon 2020 Programme (H2020-Compet-08-2014) under grant agreement UPWARDS-633127, and from the Spanish Ministry of Economy and Competitiveness Project CGL2014-59363-P (AMARTE).
URI: http://hdl.handle.net/10045/140306
ISSN: 0019-1035 (Print) | 1090-2643 (Online)
DOI: 10.1016/j.icarus.2017.01.028
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2017 Elsevier Inc.
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.icarus.2017.01.028
Aparece en las colecciones:Investigaciones financiadas por la UE
INV - Astronomía y Astrofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailEgea-Gonzalez_etal_2017_Icarus_final.pdfVersión final (acceso restringido)5,35 MBAdobe PDFAbrir    Solicitar una copia
ThumbnailEgea-Gonzalez_etal_2017_Icarus_accepted.pdfAccepted Manuscript (acceso abierto)2,55 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.