Zr-Porphyrin Metal–Organic Framework as nanoreactor for boosting the formation of hydrogen clathrates

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/139558
Información del item - Informació de l'item - Item information
Title: Zr-Porphyrin Metal–Organic Framework as nanoreactor for boosting the formation of hydrogen clathrates
Authors: Carrillo-Carrión, Carolina | Farrando Pérez, Judit | Daemen, Luke L. | Cheng, Yongqiang | Ramírez-Cuesta, Anibal J. | Silvestre-Albero, Joaquín
Research Group/s: Materiales Avanzados
Center, Department or Service: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Confinement Effects | Gas Hydrates | Hydrogen Storage | Metal–Organic Frameworks | Zirconium-Metalloporphyrin Framework
Issue Date: 13-Dec-2023
Publisher: Wiley-VCH GmbH
Citation: Angewandte Chemie International Edition. 2024, 63(6): e202315280. https://doi.org/10.1002/anie.202315280
Abstract: We report the first experimental evidence for rapid formation of hydrogen clathrates under mild pressure and temperature conditions within the cavities of a zirconium-metalloporphyrin framework, specifically PCN-222. PCN-222 has been selected for its 1D mesoporous channels, high water-stability, and proper hydrophilic behavior. Firstly, we optimize a microwave (MW)-assisted method for the synthesis of nanosized PCN-222 particles with precise structure control (exceptional homogeneity in morphology and crystalline phase purity), taking advantage of MW in terms of rapid/homogeneous heating, time and energy savings, as well as potential scalability of the synthetic method. Second, we explore the relevance of the large mesoporous 1D open channels within the PCN-222 to promote the nucleation and growth of confined hydrogen clathrates. Experimental results show that PCN-222 drives the nucleation process at a lower pressure than the bulk system (1.35 kbar vs 2 kbar), with fast kinetics (minutes), using pure water, and with a nearly complete water-to-hydrate conversion. Unfortunately, PCN-222 cannot withstand these high pressures, which lead to a significant alteration of the mesoporous structure while the microporous network remains mainly unchanged.
Sponsor: Authors would like to acknowledge financial support from Ministerio de Ciencia e Innovación (Project PID2019-108453GB-C21 and PID2022-141034OB-C22), Consejo Superior de Investigaciones Científicas (CSIC) for internal funds (Intramural project, 202280I170), and Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital (Project CIPROM/2021/022). A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory (project IPTS-29742.1).
URI: http://hdl.handle.net/10045/139558
ISSN: 1433-7851 (Print) | 1521-3773 (Online)
DOI: 10.1002/anie.202315280
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Peer Review: si
Publisher version: https://doi.org/10.1002/anie.202315280
Appears in Collections:INV - LMA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailCarrillo‐Carrion_etal_2023_AngewChemIntEd.pdf3,7 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.