Ni-BaMnO3 Perovskite Catalysts for NOx-Assisted Soot Oxidation: Analyzing the Effect of the Nickel Addition Method

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/138663
Información del item - Informació de l'item - Item information
Título: Ni-BaMnO3 Perovskite Catalysts for NOx-Assisted Soot Oxidation: Analyzing the Effect of the Nickel Addition Method
Autor/es: Montilla-Verdú, Salvador | Díaz Verde, Álvaro | Torregrosa-Rivero, Verónica | Illán-Gómez, María José
Grupo/s de investigación o GITE: Materiales Carbonosos y Medio Ambiente
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Perovskite | Nickel | Manganese | NOX | Soot oxidation | Diesel
Fecha de publicación: 20-nov-2023
Editor: MDPI
Cita bibliográfica: Montilla-Verdú S, Díaz-Verde Á, Torregrosa-Rivero V, Illán-Gómez MJ. Ni-BaMnO3 Perovskite Catalysts for NOx-Assisted Soot Oxidation: Analyzing the Effect of the Nickel Addition Method. Catalysts. 2023; 13(11):1453. https://doi.org/10.3390/catal13111453
Resumen: In this study, we analyzed the role of a series of BaMn1−xNixO3 (x = 0, 0.2, and 0.4) mixed oxide catalysts, synthesized using the sol–gel method, in NOx-assisted diesel soot oxidation. ICP-OES, XRD, XPS, and H2-TPR techniques were used for characterization and Temperature-Programmed Reaction experiments (NOx-TPR and Soot-NOx-TPR), and isothermal reactions at 450 °C (for the most active sample) were carried out to determine the catalytic activity. All samples catalyzed NO and soot oxidation at temperatures below 400 °C, presenting nickel-containing catalysts with the highest soot conversion and selectivity to CO2. However, the nickel content did not significantly modify the catalytic performance, and in order to improve it, two catalysts (5 wt % in Ni) were synthesized via the hydrothermal method (BMN2H) and the impregnation of nickel on a BaMnO3 perovskite as support (M5). The two samples presented higher activity for NO and soot oxidation than BMN2E (obtained via the sol–gel method) as they presented more nickel on the surface (as determined via XPS). BMN2H was more active than M5 as it presented (i) more surface oxygen vacancies, which are active sites for oxidation reactions; (ii) improved redox properties; and (iii) a lower average crystal size for nickel (as NiO). As a consequence of these properties, BMN2H featured a high soot oxidation rate at 450 °C, which hindered the accumulation of soot during the reaction and, thus, the deactivation of the catalyst.
Patrocinador/es: This research was funded by the Spanish Government (MINCINN: PID2019-105542RB-I00/AEI/10.13039/501100011033 Project), the European Union (FEDER Funds), and Generalitat Valenciana (CIPROM/2021-070 Project). A. Díaz-Verde thanks the University of Alicante for his predoctoral contract.
URI: http://hdl.handle.net/10045/138663
ISSN: 2073-4344
DOI: 10.3390/catal13111453
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.3390/catal13111453
Aparece en las colecciones:INV - MCMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailMontilla-Verdu_etal_2023_Catalysts.pdf2,87 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.