Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/138558
Información del item - Informació de l'item - Item information
Título: Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling
Autor/es: Fusco, Ludovico | Lefort, Riwal | Smith, Kevin | Benmansour, Fethallah | González, Germán | Barillari, Caterina | Rinn, Bernd | Fleuret, Francois | Fua, Pascal | Pertz, Olivier
Grupo/s de investigación o GITE: Robótica y Visión Tridimensional (RoViT)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial
Palabras clave: Computer vision | Neuron profiling | Rho guanosine triphosphatases
Fecha de publicación: 4-ene-2016
Editor: The Rockefeller University Press
Cita bibliográfica: Journal of Cell Biology. 2016, 212(1): 91-111. https://doi.org/10.1083/jcb.201506018
Resumen: Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth.
Patrocinador/es: This work was supported by a Swiss National Science Foundation Sinergia grant to O. Pertz, P. Fua, and F. Fleuret and by Swiss National Science Foundation and International Foundation for Research in Paraplegia grants to O. Pertz.
URI: http://hdl.handle.net/10045/138558
ISSN: 0021-9525 (Print) | 1540-8140 (Online)
DOI: 10.1083/jcb.201506018
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2016 Fusco et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.1083/jcb.201506018
Aparece en las colecciones:INV - RoViT - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailFusco_etal_2016_JCellBiol.pdf5,16 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.