Deep ensemble geophysics-informed neural networks for the prediction of celestial pole offsets

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/138290
Información del item - Informació de l'item - Item information
Título: Deep ensemble geophysics-informed neural networks for the prediction of celestial pole offsets
Autor/es: Kiani Shahvandi, Mostafa | Belda, Santiago | Karbon, Maria | Mishra, Siddhartha | Soja, Benedikt
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Matemática Aplicada
Palabras clave: Earth rotation variations | Machine learning | Time-series analysis
Fecha de publicación: 2-nov-2023
Editor: Oxford University Press
Cita bibliográfica: Geophysical Journal International. 2024, 236(1): 480-493. https://doi.org/10.1093/gji/ggad436
Resumen: Celestial Pole Offsets (CPO), denoted by dX and dY, describe the differences in the observed position of the pole in the celestial frame with respect to a certain precession-nutation model. Precession and nutation components are part of the transformation matrix between terrestrial and celestial systems. Therefore, various applications in geodetic science such as high-precision spacecraft navigation require information regrading precession and nutation. For this purpose, CPO can be added to the precession-nutation model to precisely describe the motion of the celestial pole. However, as Very Long Baseline Interferometry (VLBI) – currently the only technique providing CPO – requires long data processing times resulting in several weeks of latency, predictions of CPO become necessary. Here we present a new methodology named Deep Ensemble Geophysics-Informed Neural Networks (DEGINNs) to provide accurate CPO predictions. The methodology has three main elements: (1) deep ensemble learning to provide the prediction uncertainty; (2) broad-band Liouville equation as a geophysical constraint connecting the rotational dynamics of CPO to the atmospheric and oceanic Effective Angular Momentum functions (EAM); and (3) coupled oscillatory recurrent neural networks to model the sequential characteristics of CPO time series, also capable of handling irregularly-sampled time series. To test the methodology, we use the newest version of the final CPO time series of International Earth Rotation and Reference Systems Service (IERS), namely IERS 20 C04. We focus on a forecasting horizon of 90 days, the practical forecasting horizon needed in space-geodetic applications. Furthermore, for validation purposes we generate an independent global VLBI solution for CPO since 1984 up to the end of 2022 and analyze the series. We draw the following conclusions. First, the prediction performance of DEGINNs demonstrates up to 25% and 33% improvement respectively for dX and dY, with respect to the rapid data provided by IERS. Second, predictions made with the help of EAM are more accurate compared to those without EAM, thus providing a clue to the role of atmosphere and ocean on the excitation of CPO. Finally, free core nutation period shows temporal variations with a dominant periodicity of around one year, partially excited by EAM.
Patrocinador/es: Santiago Belda was partially supported by Generalitat Valenciana (SEJIGENT/2021/001), the European Union—NextGenerationEU (ZAMBRANO 21-04) and Ministerio de Ciencia e Innovación (MCIN/AEI/10.13039/501100011033/). Maria Karbon was supported by PROMETEO/2021/030 funded by Generalitat Valenciana.
URI: http://hdl.handle.net/10045/138290
ISSN: 0956-540X (Print) | 1365-246X (Online)
DOI: 10.1093/gji/ggad436
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Revisión científica: si
Versión del editor: https://doi.org/10.1093/gji/ggad436
Aparece en las colecciones:Personal Investigador sin Adscripción a Grupo

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailShahvandi_etal_2023_GeophysJInt.pdf1,61 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.