Unraveling the Phase Transition Behavior of MgMn2O4 Electrodes for Their Use in Rechargeable Magnesium Batteries

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/136770
Información del item - Informació de l'item - Item information
Título: Unraveling the Phase Transition Behavior of MgMn2O4 Electrodes for Their Use in Rechargeable Magnesium Batteries
Autor/es: Miralles, Carmen | Lana-Villarreal, Teresa | Gómez, Roberto
Grupo/s de investigación o GITE: Grupo de Fotoquímica y Electroquímica de Semiconductores (GFES)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: MgMn2O4 | Magnesium batteries | In-situ Raman spectroscopy | Mg2+ insertion
Fecha de publicación: 1-ago-2023
Editor: MDPI
Cita bibliográfica: Miralles C, Lana-Villarreal T, Gómez R. Unraveling the Phase Transition Behavior of MgMn2O4 Electrodes for Their Use in Rechargeable Magnesium Batteries. Materials. 2023; 16(15):5402. https://doi.org/10.3390/ma16155402
Resumen: Rechargeable magnesium batteries are an attractive alternative to lithium batteries because of their higher safety and lower cost, being spinel-type materials promising candidates for their positive electrode. Herein, MgMn2O4 with a tetragonal structure is synthesized via a simple, low-cost Pechini methodology and tested in aqueous media. Electrochemical measurements combined with in-situ Raman spectroscopy and other ex-situ physicochemical characterization techniques show that, in aqueous media, the charge/discharge process occurs through the co-intercalation of Mg2+ and water molecules. A progressive structure evolution from a well-defined spinel to a birnessite-type arrangement occurs during the first cycles, provoking capacity activation. The concomitant towering morphological change induces poor cycling performance, probably due to partial delamination and loss of electrical contact between the active film and the substrate. Interestingly, both MgMn2O4 capacity retention and cyclability can be increased by doping with nickel. This work provides insights into the positive electrode processes in aqueous media, which is vital for understanding the charge storage mechanism and the correlated performance of spinel-type host materials.
Patrocinador/es: This study formed part of the Advanced Materials programme and was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) and Generalitat Valenciana. The authors also acknowledge funding from the Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación/Fondos FEDER through project PID2021-128876OB-I00 and from the Generalitat Valenciana through project PROMETEO/2020/089. C.M. is grateful to the Vicepresidency of Research and Innovation of the University of Alicante for the award of an FPU grant.
URI: http://hdl.handle.net/10045/136770
ISSN: 1996-1944
DOI: 10.3390/ma16155402
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.3390/ma16155402
Aparece en las colecciones:INV - GFES - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailMiralles_etal_2023_Materials.pdf4,18 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons