Electronic structure and experimental benchmarking of aluminum spinels for solar water splitting

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/134181
Información del item - Informació de l'item - Item information
Título: Electronic structure and experimental benchmarking of aluminum spinels for solar water splitting
Autor/es: Pastor, Francisco J. | Contreras, Maxime | Lana-Villarreal, Teresa | Orts, José M. | Gómez, Roberto
Grupo/s de investigación o GITE: Grupo de Fotoquímica y Electroquímica de Semiconductores (GFES) | Grupo de Espectroelectroquímica y Modelización (GEM)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Density Funtional Theory | Screening | Al spinels | Water splitting | Artificial Photosynthesis
Fecha de publicación: 2-may-2023
Editor: Elsevier
Cita bibliográfica: Ceramics International. 2023, 49(15): 24812-24823. https://doi.org/10.1016/j.ceramint.2023.05.003
Resumen: A computational methodology for screening aluminum-based spinel oxides for photoelectrochemical water splitting has been developed by combining HSE06 and PBE + U calculations. The method, which can be extended to other ternary oxides, provides values for formation energies, band gaps, band edge positions, and carrier effective masses. The formation energies indicate that the Al spinels of Mg, Co, Ni, and Zn (successfully synthesized using a sol-gel method) are among the most stable in the series. Except for the Mg and Zn cases, the electronic structures of the spinels are rather similar, with band gaps separating occupied and empty 3 d metal states. The charge-transfer band gap values are found to be above 3 eV, limiting the use of these materials in solar water splitting, although an estimate of the band edge positions indicates that, in general, both conduction band electrons and valence band holes can promote water reduction and oxidation, respectively. The effective masses of the charge carriers suggests that the spinels are n-type semiconductors as experimentally demonstrated. Importantly, both the UV–vis spectra and the photoelectrochemical results qualitatively agree with the theoretical electronic structure. In general vein, this work demonstrates the potential of theoretical screening for the development and selection of new photoelectrode materials based on ternary oxides for their application in solar water splitting.
Patrocinador/es: The authors gratefully acknowledge funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 760930 (FotoH2 project). This research was also partially funded by the Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación/Fondos FEDER through project PID2021-128876OB-I00 and by the Generalitat Valenciana through project PROMETEO/2020/089. F.J.P. also acknowledges the Spanish Ministry of Education for the award of an FPU grant.
URI: http://hdl.handle.net/10045/134181
ISSN: 0272-8842 (Print) | 1873-3956 (Online)
DOI: 10.1016/j.ceramint.2023.05.003
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.ceramint.2023.05.003
Aparece en las colecciones:INV - GFES - Artículos de Revistas
INV - GEM - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailPastor_etal_2023_CeramicsInt.pdf7,29 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons