Electronic structure and experimental benchmarking of aluminum spinels for solar water splitting

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/134181
Información del item - Informació de l'item - Item information
Title: Electronic structure and experimental benchmarking of aluminum spinels for solar water splitting
Authors: Pastor, Francisco J. | Contreras, Maxime | Lana-Villarreal, Teresa | Orts, José M. | Gómez, Roberto
Research Group/s: Grupo de Fotoquímica y Electroquímica de Semiconductores (GFES) | Grupo de Espectroelectroquímica y Modelización (GEM)
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: Density Funtional Theory | Screening | Al spinels | Water splitting | Artificial Photosynthesis
Issue Date: 2-May-2023
Publisher: Elsevier
Citation: Ceramics International. 2023, 49(15): 24812-24823. https://doi.org/10.1016/j.ceramint.2023.05.003
Abstract: A computational methodology for screening aluminum-based spinel oxides for photoelectrochemical water splitting has been developed by combining HSE06 and PBE + U calculations. The method, which can be extended to other ternary oxides, provides values for formation energies, band gaps, band edge positions, and carrier effective masses. The formation energies indicate that the Al spinels of Mg, Co, Ni, and Zn (successfully synthesized using a sol-gel method) are among the most stable in the series. Except for the Mg and Zn cases, the electronic structures of the spinels are rather similar, with band gaps separating occupied and empty 3 d metal states. The charge-transfer band gap values are found to be above 3 eV, limiting the use of these materials in solar water splitting, although an estimate of the band edge positions indicates that, in general, both conduction band electrons and valence band holes can promote water reduction and oxidation, respectively. The effective masses of the charge carriers suggests that the spinels are n-type semiconductors as experimentally demonstrated. Importantly, both the UV–vis spectra and the photoelectrochemical results qualitatively agree with the theoretical electronic structure. In general vein, this work demonstrates the potential of theoretical screening for the development and selection of new photoelectrode materials based on ternary oxides for their application in solar water splitting.
Sponsor: The authors gratefully acknowledge funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 760930 (FotoH2 project). This research was also partially funded by the Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación/Fondos FEDER through project PID2021-128876OB-I00 and by the Generalitat Valenciana through project PROMETEO/2020/089. F.J.P. also acknowledges the Spanish Ministry of Education for the award of an FPU grant.
URI: http://hdl.handle.net/10045/134181
ISSN: 0272-8842 (Print) | 1873-3956 (Online)
DOI: 10.1016/j.ceramint.2023.05.003
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer Review: si
Publisher version: https://doi.org/10.1016/j.ceramint.2023.05.003
Appears in Collections:INV - GFES - Artículos de Revistas
INV - GEM - Artículos de Revistas
Research funded by the EU

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailPastor_etal_2023_CeramicsInt.pdf7,29 MBAdobe PDFOpen Preview

This item is licensed under a Creative Commons License Creative Commons