Numerical 3D Model of a Novel Photoelectrolysis Tandem Cell with Solid Electrolyte for Green Hydrogen Production

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/132722
Información del item - Informació de l'item - Item information
Título: Numerical 3D Model of a Novel Photoelectrolysis Tandem Cell with Solid Electrolyte for Green Hydrogen Production
Autor/es: Giacoppo, Giosuè | Trocino, Stefano | Lo Vecchio, Carmelo | Baglio, Vincenzo | Díez García, María Isabel | Aricò, Antonino Salvatore | Barbera, Orazio
Grupo/s de investigación o GITE: Grupo de Fotoquímica y Electroquímica de Semiconductores (GFES)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Photoelectrochemical tandem cell | Hydrogen production | Hematite photoanode | Numerical model | Solid electrolyte membrane | Metal oxide semiconductor
Fecha de publicación: 16-feb-2023
Editor: MDPI
Cita bibliográfica: Giacoppo G, Trocino S, Lo Vecchio C, Baglio V, Díez-García MI, Aricò AS, Barbera O. Numerical 3D Model of a Novel Photoelectrolysis Tandem Cell with Solid Electrolyte for Green Hydrogen Production. Energies. 2023; 16(4):1953. https://doi.org/10.3390/en16041953
Resumen: The only strategy for reducing fossil fuel-based energy sources is to increase the use of sustainable ones. Among renewable energy sources, solar energy can significantly contribute to a sustainable energy future, but its discontinuous nature requires a large storage capacity. Due to its ability to be produced from primary energy sources and transformed, without greenhouse gas emissions, into mechanical, thermal, and electrical energy, emitting only water as a by-product, hydrogen is an effective carrier and means of energy storage. Technologies for hydrogen production from methane, methanol, hydrocarbons, and water electrolysis using non-renewable electrical power generate CO2. Conversely, employing photoelectrochemistry to harvest hydrogen is a sustainable technique for sunlight-direct energy storage. Research on photoelectrolysis is addressed to materials, prototypes, and simulation studies. From the latter point of view, models have mainly been implemented for aqueous-electrolyte cells, with only one semiconductor-based electrode and a metal-based counter electrode. In this study, a novel cell architecture was numerically modelled. A numerical model of a tandem cell with anode and cathode based on metal oxide semiconductors and a polymeric membrane as an electrolyte was implemented and investigated. Numerical results of 11% solar to hydrogen conversion demonstrate the feasibility of the proposed novel concept.
Patrocinador/es: This research was funded by the European Union’s Horizon 2020 research and innovation program under grant agreement ID 760930 (FotoH2 project).
URI: http://hdl.handle.net/10045/132722
ISSN: 1996-1073
DOI: 10.3390/en16041953
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.3390/en16041953
Aparece en las colecciones:INV - GFES - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailGiacoppo_etal_2023_Energies.pdf2,56 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons