A stable anthraquinone-derivative cathode to develop sodium metal batteries: the role of ammoniates as electrolytes

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/129907
Información del item - Informació de l'item - Item information
Título: A stable anthraquinone-derivative cathode to develop sodium metal batteries: the role of ammoniates as electrolytes
Autor/es: Ruiz-Martínez, Débora | Orts, José M. | Gómez, Roberto
Grupo/s de investigación o GITE: Grupo de Fotoquímica y Electroquímica de Semiconductores (GFES) | Grupo de Espectroelectroquímica y Modelización (GEM)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Sodium metal batteries | Anthraquinone-based cathode | Vat dye | Indanthrone blue | Inorganic electrolytes | Liquid ammoniates
Fecha de publicación: 26-nov-2022
Editor: Elsevier
Cita bibliográfica: Journal of Energy Chemistry. 2023, 77: 572-580. https://doi.org/10.1016/j.jechem.2022.11.034
Resumen: Rechargeable sodium metal batteries constitute a cost-effective option for energy storage although sodium shows some drawbacks in terms of reactivity with organic solvents and dendritic growth. Here we demonstrate that an organic dye, indanthrone blue, behaves as an efficient cathode material for the development of secondary sodium metal batteries when combined with novel inorganic electrolytes. These electrolytes are ammonia solvates, known as liquid ammoniates, which can be formulated as NaI·3.3NH3 and NaBF4·2.5NH3. They impart excellent stability to sodium metal, and they favor sodium non-dendritic growth linked to their exceedingly high sodium ion concentration. This advantage is complemented by a high specific conductivity. The battery described here can last hundreds of cycles at 10 C while keeping a Coulombic efficiency of 99% from the first cycle. Because of the high capacity of the cathode and the superior physicochemical properties of the electrolytes, the battery can reach a specific energy value as high as 210 Wh kg−1IB, and a high specific power of 2.2 kW kg−1IB, even at below room temperature (4 °C). Importantly, the battery is based on abundant and cost-effective materials, bearing promise for its application in large-scale energy storage.
Patrocinador/es: This work has been developed in the context of project RTI2018–102061–B–I00 financed by FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación. The Generalitat Valenciana through project PROMETEO/2020/089 is also gratefully acknowledged.
URI: http://hdl.handle.net/10045/129907
ISSN: 2095-4956 (Print) | 2096-885X (Online)
DOI: 10.1016/j.jechem.2022.11.034
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.jechem.2022.11.034
Aparece en las colecciones:INV - GFES - Artículos de Revistas
INV - GEM - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailRuiz-Martinez_etal_2023_JEnergyChem.pdf1,85 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons