Modified BaMnO3-Based Catalysts for Gasoline Particle Filters (GPF): A Preliminary Study

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/129705
Información del item - Informació de l'item - Item information
Título: Modified BaMnO3-Based Catalysts for Gasoline Particle Filters (GPF): A Preliminary Study
Autor/es: Torregrosa-Rivero, Verónica | Sánchez-Adsuar, María Salvadora | Illán-Gómez, María José
Grupo/s de investigación o GITE: Materiales Carbonosos y Medio Ambiente
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica
Palabras clave: Perovskite | Carbon black | GPF | Soot oxidation
Fecha de publicación: 28-oct-2022
Editor: MDPI
Cita bibliográfica: Torregrosa-Rivero V, Sánchez-Adsuar M-S, Illán-Gómez M-J. Modified BaMnO3-Based Catalysts for Gasoline Particle Filters (GPF): A Preliminary Study. Catalysts. 2022; 12(11):1325. https://doi.org/10.3390/catal12111325
Resumen: Gasoline engines, mainly gasoline direct injection engines (GDI) require, in addition to three-way catalysts (TWC), a new catalytic system to remove the formed soot. Gasoline Particle Filters (GPF) are, among others, a possible solution. BaMnO3 and copper-doped BaMnO3 perovskites seem to be a feasible alternative to current catalysts for GPF. The physical and chemical properties of these two perovskites determining the catalytic performance have been modified using different synthesis routes: (i) sol-gel, (ii) modified sol-gel and iii) hydrothermal. The deep characterization allows concluding that: (i) all samples present a perovskite-like structure (hexagonal), except BMC3 which shows a polytype one (due to the distortion caused by copper insertion in the lattice), and ii) when a low calcination temperature is used during synthesis, the sintering effect decreases and the textural properties, the reducibility and the oxygen mobility are improved. The study of soot oxidation simulating the hardest GDI scenarios reveals that, as for diesel soot removal, the best catalytic performance involves the presence of oxygen vacancies to adsorb and activate oxygen and a labile Mn (IV)/Mn (III) redox pair to dissociate the adsorbed oxygen. The combination of both properties allows the transport of the dissociated oxygen towards the soot.
Patrocinador/es: This research was funded by Generalitat Valenciana (CIPROM/2021/70), Spanish Government (PID2019-105542RB-I00) and EU (FEDER Founding).
URI: http://hdl.handle.net/10045/129705
ISSN: 2073-4344
DOI: 10.3390/catal12111325
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.3390/catal12111325
Aparece en las colecciones:INV - MCMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailTorregrosa-Rivero_etal_2022_Catalysts.pdf4,98 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons