Simulating the nanometric track-structure of carbon ion beams in liquid water at energies relevant for hadrontherapy

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/129651
Información del item - Informació de l'item - Item information
Título: Simulating the nanometric track-structure of carbon ion beams in liquid water at energies relevant for hadrontherapy
Autor/es: Vera Gomis, Pablo de | Simonucci, Stefano | Trevisanutto, Paolo E. | Abril, Isabel | Dapor, Maurizio | Taioli, Simone | García Molina, Rafael
Grupo/s de investigación o GITE: Interacción de Partículas Cargadas con la Materia
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Nanometric track-structure | Carbon ion beams | Liquid water | Hadrontherapy
Fecha de publicación: 2022
Editor: IOP Publishing
Cita bibliográfica: Journal of Physics: Conference Series. 2022, 2326: 012017. https://doi.org/10.1088/1742-6596/2326/1/012017
Resumen: The nanometric track-structure of energetic ion beams in biological media determines the direct physical damage to living cells, which is one of the main responsibles of their killing or inactivation during radiotherapy treatments or under cosmic radiation bombardment. In the present work, detailed track-structure Monte Carlo simulations, performed with the code SEED (Secondary Electron Energy Deposition), are presented for carbon ions in a wide energy range in liquid water. Liquid water is the main constituent of biological tissues, and carbon ions are one of the most promising projectiles currently available for ion beam cancer therapy. The simulations are based on accurate cross sections for the different elastic and inelastic events determining the interaction of charged particles with condensed-phase materials. The latter are derived from the ab initio calculation of the electronic excitation spectrum of liquid water by means of time-dependent density functional theory (TDDFT), which is then used within the dielectric formalism to obtain inelastic electronic cross sections for both carbon ions and secondary electrons. Both the ionisation cross sections of water by carbon ions and the excitation and ionisation cross sections for electron impact are obtained in very good agreement with known experimental data. The elastic scattering cross sections for electrons in condensed-phase water are also obtained from ab initio calculations by solving the Dirac-Hartree-Fock equation. The detailed simulations fed with reliable cross sections allow to assess the contribution of different physical mechanisms (electronic excitation, ionisation and dissociative electron attachment –DEA–) to the carbon ion-induced direct biodamage.
Patrocinador/es: This project received funding from the European Union's Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie grant agreement no. 840752. This work was also supported by the Spanish Ministerio de Ciencia e Innovación and the European Regional Development Fund (Project PGC2018-096788-B-I00); the Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia (Project 19907/GERM/15); and the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: Advanced Digital Technologies (contract No. 075-15-2020-934 dated 17.11.2020).
URI: http://hdl.handle.net/10045/129651
ISSN: 1742-6588 (Print) | 1742-6596 (Online)
DOI: 10.1088/1742-6596/2326/1/012017
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd.
Revisión científica: si
Versión del editor: https://doi.org/10.1088/1742-6596/2326/1/012017
Aparece en las colecciones:INV - IPCM - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnailde-Vera_etal_2022_JPhysConfSer.pdf1,58 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons