Life Cycle assessment of biorefinery technology producing activated carbon and levulinic acid

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/129646
Información del item - Informació de l'item - Item information
Título: Life Cycle assessment of biorefinery technology producing activated carbon and levulinic acid
Autor/es: Chaparro-Garnica, Jessica | Guiton, Mélanie | Salinas-Torres, David | Morallon, Emilia | Benetto, Enrico | Cazorla-Amorós, Diego
Grupo/s de investigación o GITE: Materiales Carbonosos y Medio Ambiente | Electrocatálisis y Electroquímica de Polímeros
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Hydrothermal carbonization | Life cycle assessment | Activated carbon | Levulinic acid | Eco-design | Biorefinery process
Fecha de publicación: 9-nov-2022
Editor: Elsevier
Cita bibliográfica: Journal of Cleaner Production. 2022, 380(Part 2): 135098. https://doi.org/10.1016/j.jclepro.2022.135098
Resumen: Life Cycle Assessment (LCA) is applied to eco-design the H3PO4-assisted hydrothermal carbonization (HTC) process converting biomass residue into high-value products. The main innovation of the process relies on the combination of the H3PO4-assisted HTC with the activation treatment of the obtained hydrochar, resulting in activated carbon that is then functionalized. In addition, the liquid phase obtained from HTC is eventually purified to extract levulinic acid. Under average conditions at the laboratory scale (reference), the LCA showed that electricity consumption is the main contributor (45–70%) to impacts on climate change, photochemical ozone formation, acidification, freshwater eutrophication, freshwater ecotoxicity and fossil resources use. Pyridine, the main chemical used in the functionalization stage, contributes to impacts on human toxicity and on marine eutrophication respectively by 77.3% and 47.3%. Building on these results, two further scenarios were studied, one considering the maximum capacity of each equipment and another one assuming the potential improvements once the process will be upscaled. The scenarios were validated in a series of laboratory scale tests. Depending on the environmental impact category chosen, the results showed a reduction potential of 30–65% as compared to the reference scenario. These findings confirm the added value of LCA in the ecodesign of technologies and pave the way to further improvements of the technology itself but also of the LCA methodology used for the assessment.
Patrocinador/es: This research was partially supported by the MICINN, FEDER (RTI2018-095291-B-I00). JCG thanks for her predoctoral scholarships (GRISOLIA/2018/105) and (BEFPI/2020/067) funded by the Generalitat Valenciana and DST thanks MICINN for the “Juan de la Cierva” contract (IJCI-2016-27636).
URI: http://hdl.handle.net/10045/129646
ISSN: 0959-6526 (Print) | 1879-1786 (Online)
DOI: 10.1016/j.jclepro.2022.135098
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 Published by Elsevier Ltd.
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.jclepro.2022.135098
Aparece en las colecciones:INV - GEPE - Artículos de Revistas
INV - MCMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailChaparro-Garnica_etal_2022_JCleanProd_final.pdfVersión final (acceso restringido)4,72 MBAdobe PDFAbrir    Solicitar una copia
ThumbnailChaparro-Garnica_etal_2022_JCleanProd_accepted.pdfEmbargo 24 meses (acceso abierto: 10 nov. 2024)2,13 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.