Soil moisture retrieval over crop fields based on Two-Component polarimetric decomposition: A comparison of generalized volume scattering models

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/129406
Información del item - Informació de l'item - Item information
Título: Soil moisture retrieval over crop fields based on Two-Component polarimetric decomposition: A comparison of generalized volume scattering models
Autor/es: Dou, Qi | Xie, Qinghua | Peng, Xing | Lai, Kunyu | Wang, Jinfei | Lopez-Sanchez, Juan M. | Shang, Jiali | Shi, Hongtao | Fu, Haiqiang | Zhu, Jianjun
Grupo/s de investigación o GITE: Señales, Sistemas y Telecomunicación
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Instituto Universitario de Investigación Informática
Palabras clave: Agriculture | Soil moisture | Polarimetric synthetic aperture radar (PolSAR) | Model-based decomposition | Generalized volume scattering model | RADARSAT-2
Fecha de publicación: 8-nov-2022
Editor: Elsevier
Cita bibliográfica: Journal of Hydrology. 2022, 615(Part A): 128696. https://doi.org/10.1016/j.jhydrol.2022.128696
Resumen: Model-based polarimetric decomposition can separate to some extent the backscattered radar signals from the vegetation canopy and the underlying ground, hence enabling a strategy for soil moisture retrieval in vegetated agricultural fields. However, the volume scattering models used in previous studies are only applicable to specific cases, making it difficult to completely remove the volume component induced by the vegetation layer. In this paper, three generalized volume scattering models (i.e., generalized volume scattering model (GVSM), simplified adaptive volume scattering model (SAVSM), and simplified Neumann volume scattering model (SNVSM)) are incorporated in the decomposition and evaluated for soil moisture retrieval. Considering the complexity and descriptive ability of the available physical models, a modified two-component model-based decomposition is proposed as the basic decomposition framework. This decomposition is also based on the physical constraint of the dielectric constants included in the model. The employed models combine an X-Bragg surface scattering model with three continuous generalized volume scattering models. The analytic solution of the parameters is obtained, and the minimum power criterion is used to determine the optimal solution to fit the model. By using the proposed model-based decomposition framework, the performance of the three models to simulate the canopy scattering and, as a result, to later estimate soil moisture under agricultural vegetation is evaluated. Fully polarimetric RADARSAT-2 C-band images acquired on eight dates in 2013 and 2015 over fields covered by two crops (wheat and soybean) were employed for validation. Results show that the proposed decomposition method, using any of the three volume scattering models, can provide promising inversion results of soil moisture, with RMSEs ranging from 2.89 to 7.43 [vol.%]. Compared with the other two models, the SNVSM simulates the vegetation contribution more accurately in this framework, and it provides a stable soil moisture inversion performance at different crop phenological stages, with an optimal overall accuracy of RMSE=4.99 [vol.%] and a correlation coefficient of R=0.78.
Patrocinador/es: This work was supported in part by the National Natural Science Foundation of China (Grant No. 41820104005, 42171387, 41804004, 42101400), the Canadian Space Agency SOAR-E Program (Grant No. SOAR-E-5489), and the Spanish Ministry of Science and Innovation (AEI Grant No. PID2020-117303GB-C22).
URI: http://hdl.handle.net/10045/129406
ISSN: 0022-1694 (Print) | 1879-2707 (Online)
DOI: 10.1016/j.jhydrol.2022.128696
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 Elsevier B.V.
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.jhydrol.2022.128696
Aparece en las colecciones:INV - SST - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailDou_etal_2022_JHydrology_accepted.pdfEmbargo 24 meses (acceso abierto: 9 nov. 2024)6,14 MBAdobe PDFAbrir    Solicitar una copia
ThumbnailDou_etal_2022_JHydrology_final.pdfVersión final (acceso restringido)10,67 MBAdobe PDFAbrir    Solicitar una copia
ThumbnailDou_etal_2022_JHydrology_preprint.pdfPreprint (acceso abierto)1,94 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.