Ice-Prevention and De-Icing Capacity of Epoxy Resin Filled with Hybrid Carbon-Nanostructured Forms: Self-Heating by Joule Effect

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/118055
Registro completo de metadatos
Registro completo de metadatos
Campo DCValorIdioma
dc.contributorDurabilidad de Materiales y Construcciones en Ingeniería y Arquitecturaes_ES
dc.contributor.authorFarcas, Catalina-
dc.contributor.authorGalao Malo, Oscar-
dc.contributor.authorVertuccio, Luigi-
dc.contributor.authorGuadagno, Liberata-
dc.contributor.authorRomero Sánchez, María Dolores-
dc.contributor.authorRodríguez Pastor, Iluminada-
dc.contributor.authorGarcés, Pedro-
dc.contributor.otherUniversidad de Alicante. Departamento de Ingeniería Civiles_ES
dc.date.accessioned2021-09-23T07:35:02Z-
dc.date.available2021-09-23T07:35:02Z-
dc.date.issued2021-09-17-
dc.identifier.citationFarcas C, Galao O, Vertuccio L, Guadagno L, Romero-Sánchez MD, Rodríguez-Pastor I, Garcés P. Ice-Prevention and De-Icing Capacity of Epoxy Resin Filled with Hybrid Carbon-Nanostructured Forms: Self-Heating by Joule Effect. Nanomaterials. 2021; 11(9):2427. https://doi.org/10.3390/nano11092427es_ES
dc.identifier.issn2079-4991-
dc.identifier.urihttp://hdl.handle.net/10045/118055-
dc.description.abstractIn this study, CNTs and graphite have been incorporated to provide electrical conductivity and self-heating capacity by Joule effect to an epoxy matrix. Additionally, both types of fillers, with different morphology, surface area and aspect ratio, were simultaneously incorporated (hybrid CNTs and graphite addition) into the same epoxy matrix to evaluate the effect of the self-heating capacity of carbon materials-based resins on de-icing and ice-prevention capacity. The self-heating capacity by Joule effect and the thermal conductivity of the differently filled epoxy resin were evaluated for heating applications at room temperature and at low temperatures for de-icing and ice-prevention applications. The results show that the higher aspect ratio of the CNTs determined the higher electrical conductivity of the epoxy resin compared to that of the epoxy resin filled with graphite, but the 2D morphology of graphite produced the higher thermal conductivity of the filled epoxy resin. The presence of graphite enhanced the thermal stability of the filled epoxy resin, helping avoid its deformation produced by the softening of the epoxy resin (the higher the thermal conductivity, the higher the heat dissipation), but did not contribute to the self-heating by Joule effect. On the other hand, the feasibility of electrically conductive epoxy resins for de-icing and ice-prevention applications by Joule effect was demonstrated.es_ES
dc.description.sponsorshipThis research was funded by the European Commission by the financial support of the MASTRO project, H2020 R&I programme. Contract no. 760940.es_ES
dc.languageenges_ES
dc.publisherMDPIes_ES
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).es_ES
dc.subjectEpoxy resines_ES
dc.subjectMulti-walled carbon nanotubeses_ES
dc.subjectGraphitees_ES
dc.subjectHeatinges_ES
dc.subjectDe-icinges_ES
dc.subjectJoule effectes_ES
dc.subject.otherIngeniería de la Construcciónes_ES
dc.titleIce-Prevention and De-Icing Capacity of Epoxy Resin Filled with Hybrid Carbon-Nanostructured Forms: Self-Heating by Joule Effectes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.3390/nano11092427-
dc.relation.publisherversionhttps://doi.org/10.3390/nano11092427es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/760940es_ES
Aparece en las colecciones:INV - BIMAEC - Artículos de Revistas
Investigaciones financiadas por la UE
INV - DMCIA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailFarcas_etal_2021_Nanomaterials.pdf50,7 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons