GPLSI-UH LETO V1.0: Motor de aprendizaje a través de ontologías
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10045/112383
Title: | GPLSI-UH LETO V1.0: Motor de aprendizaje a través de ontologías |
---|---|
Other Titles: | GPLSI-UH LETO V1.0: Learning Engine Through Ontologies |
Authors: | Estévez-Velarde, Suilan | Piad-Morffis, Alejandro | Gutiérrez, Yoan | Montoyo, Andres | Muñoz, Rafael | Almeida-Cruz, Yudivian | Palomar, Manuel | Valdés Pérez, Daniel Alejandro |
Right's holder: | Universidad de Alicante |
Research Group/s: | Procesamiento del Lenguaje Natural y Sistemas de Información (GPLSI) |
Center, Department or Service: | Universidad de Alicante. Instituto Universitario de Investigación Informática | Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos |
Keywords: | Extracción de conocimiento | Integración de conocimiento | Recurso semántico | Ontología | OWL | Minería de texto |
Knowledge Area: | Lenguajes y Sistemas Informáticos |
Date Created: | 2019 |
Issue Date: | 30-Jan-2021 |
Abstract: | LETO es un marco de aprendizaje de ontologías diseñado para extraer conocimiento de una variedad de fuentes. Estas fuentes pudieran ser datos estructurados y no estructurados, y de ellas se podrá descubrir, actualizar continuamente, enriquecer e integrar información relevante como parte de un único conocimiento semántico. En la actual versión 1.0 se limita a la extracción de conocimiento desde datos no estructurados, i.e. textos en lenguaje natural, siguiendo el modelo semántico publicado en [EGM2018]. Entre sus funcionalidades está la extracción de entidades y relaciones semánticas desde fuentes textuales; la transformación de esta información en elementos interrelacionados mediante técnicas de agrupamientos; y finalmente generación de ontologías representativas del contenido procesado. Se proporciona un punto de acceso API, y una herramienta visual para la manipulación de procesos y visualización de las ontologías obtenidas [EMA2019]. | LETO is an ontology learning framework designed to extract knowledge from a variety of sources. These sources may be structured and/or unstructured data, and from them we can discover, continuously update, enrich and integrate relevant information as part of a single semantic knowledge resource. The current 1.0 version is limited to the extraction of knowledge from unstructured data, i.e. natural language texts, following the semantic model published in [EGM2018]. Among this version’s functionalities are the extraction of entities and semantic relations from textual sources; the transformation of such information into linked elements through clustering techniques; and finally, the generation of representative ontologies of the processed content. An API access point as well as a visual tool for the manipulation of processes and visualization of the obtained ontologies is provided [EMA2019]. |
Sponsor: | Universidad de Alicante; Universidad de La Habana(Cuba); Ministerio de Educación, Cultura y Deporte, Ministerio de Economía y Competitividad (MINECO) a través de los proyectos LIVING-LANG (RTI2018-094653-B-C22) e INTEGER (RTI2018-094649-B-I00); Gobierno de la Generalitat Valenciana a través del proyecto SIIA (PROMETEO/2018/089, PROMETEU/2018/089); se ha contado con el respaldo de las acciones COST: CA19134 - “Distributed Knowledge Graphs” y CA19142 - “Leading Platform for European Citizens, Industries, Academia and Policymakers in Media Accessibility” |
URI: | http://hdl.handle.net/10045/112383 |
Language: | spa |
Type: | software |
Rights: | © Universitat d'Alacant / Universidad de Alicante |
Peer Review: | no |
Appears in Collections: | Registro de Programas de Ordenador y Bases de Datos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
![]() | Descripción técnica del software LETO | 214,57 kB | Adobe PDF | Open Preview |
Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.