Electrochemical properties of vertically aligned graphenes: tailoring heterogeneous electron transfer through manipulation of the carbon microstructure

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/110479
Información del item - Informació de l'item - Item information
Título: Electrochemical properties of vertically aligned graphenes: tailoring heterogeneous electron transfer through manipulation of the carbon microstructure
Autor/es: Brownson, Dale A.C. | Garcia-Miranda Ferrari, Alejandro | Ghosh, Subrata | Kamruddin, Mohammed | Iniesta, Jesus | Banks, Craig E.
Grupo/s de investigación o GITE: Electroquímica Aplicada y Electrocatálisis
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Electrochemical properties | Vertically aligned graphenes | Heterogeneous electron transfer | Carbon microstructure
Área/s de conocimiento: Química Física
Fecha de publicación: 6-oct-2020
Editor: Royal Society of Chemistry
Cita bibliográfica: Nanoscale Advances. 2020, 2: 5319-5328. https://doi.org/10.1039/D0NA00587H
Resumen: The electrochemical response of different morphologies (microstructures) of vertically aligned graphene (VG) configurations is reported. Electrochemical properties are analysed using the outer-sphere redox probes Ru(NH3)62+/3+ (RuHex) and N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD), with performances de-convoluted via accompanying physicochemical characterisation (Raman, TEM, SEM, AFM and XPS). The VG electrodes are fabricated using an electron cyclotron resonance chemical vapour deposition (ECR-CVD) methodology, creating vertical graphene with a range of differing heights, spacing and edge plane like-sites/defects (supported upon underlying SiO2/Si). We correlate the electrochemical reactivity/response of these novel VG configurations with the level of edge plane sites (%-edge) comprising their structure and calculate corresponding heterogeneous electron transfer (HET) rates, k0. Taller VG structures with more condensed layer stacking (hence a larger global coverage of exposed edge plane sites) are shown to exhibit improved HET kinetics, supporting the claims that edge plane sites are the predominant source of electron transfer in carbon materials. A measured k0eff of ca. 4.00 × 10−3 cm s−1 (corresponding to an exposed surface coverage of active edge plane like-sites/defects (% θedge) of 1.00%) was evident for the tallest and most closely stacked VG sample, with the inverse case true, where a VG electrode possessing large inter-aligned-graphene spacing and small flake heights exhibited only 0.08% of % θedge and a k0eff value one order of magnitude slower at ca. 3.05 × 10−4 cm s−1. Control experiments are provided with conventional CVD (horizontal) grown graphene and the edge plane of highly ordered pyrolytic graphite (EPPG of HOPG), demonstrating that the novel VG electrodes exhibit ca. 3× faster k0 than horizontal CVD graphene. EPPG exhibited the fastest HET kinetics, exhibiting ca. 2× larger k0 than the best VG. These results are of significance to those working in the field of 2D-carbon electrochemistry and materials scientists, providing evidence that the macroscale electrochemical response of carbon-based electrodes is dependent on the edge plane content and showing that a range of structural configurations can be employed for tailored properties and applications.
Patrocinador/es: D. A. C. Brownson acknowledges funding from the Ramsay Memorial Fellowships Trust. Funding from the Engineering and Physical Science Research Council (Reference: EP/N001877/1), a British Council Institutional Grant Link (No. 172726574) and Innovate UK (KTP Reference: 11606) is acknowledged.
URI: http://hdl.handle.net/10045/110479
ISSN: 2516-0230
DOI: 10.1039/D0NA00587H
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence
Revisión científica: si
Versión del editor: https://doi.org/10.1039/D0NA00587H
Aparece en las colecciones:INV - LEQA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailBrownson_etal_2020_NanoscaleAdv.pdf2,44 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons