Understanding the rate performance of microporous carbons in aqueous electrolytes

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/107910
Información del item - Informació de l'item - Item information
Título: Understanding the rate performance of microporous carbons in aqueous electrolytes
Autor/es: Aldama, Ivan | Lillo-Rodenas, Maria Angeles | Kunowsky, Mirko | Ibañez, Joaquin | Rojo, José M.
Grupo/s de investigación o GITE: Materiales Carbonosos y Medio Ambiente
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Capacitance retention | Rate performance | H2SO4 electrolyte | KOH electrolyte | Microporous carbon monoliths
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: 1-ago-2020
Editor: Elsevier
Cita bibliográfica: Electrochimica Acta. 2020, 350: 136408. doi:10.1016/j.electacta.2020.136408
Resumen: Variation of specific capacitance versus current density is studied for microporous carbons. Although literature states that capacitance retention is higher for macro/mesoporous than for microporous carbons, the results reported here show that high capacitance retention can be reached for microporous carbons in combination with aqueous electrolytes (2M H2SO4, 1M KOH and 6M KOH). Six carbon monoliths are studied; three pristine ones and those three heat-treated, so as to reduce their content of surface oxygen groups and develops porosity. The capacitance retention is analyzed based on five parameters: electronic conductivity, surface chemistry and porosity of the monoliths, ionic conductivity and type of electrolyte. The capacitance retention is higher for the monoliths working as negative (H3O+ and K+) electrodes than as positive (HSO4− and OH−) ones, being these results of interest for the use of carbon monoliths in asymmetric and hybrid supercapacitors. The highest capacitance retention is obtained by combining (i) monolith electronic conductivity of 11–14 Scm−1 and micropore size of 0.6–0.8 nm for H3O+, K+ and HSO4−, and of 0.85–0.95 nm for OH−; (ii) electrolyte ionic conductivity above 600 mScm−1 and 6M KOH electrolyte, since this electrolyte performs better than 2M H2SO4 and 1M KOH.
Patrocinador/es: Funding through the PID2019-104717RB-I00 project is acknowledged to Spanish MICINN.
URI: http://hdl.handle.net/10045/107910
ISSN: 0013-4686 (Print) | 1873-3859 (Online)
DOI: 10.1016/j.electacta.2020.136408
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2020 Elsevier Ltd.
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.electacta.2020.136408
Aparece en las colecciones:INV - MCMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailAldama_etal_2020_ElectActa_final.pdfVersión final (acceso restringido)2,77 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.