Persistent East Equatorial Pacific Carbon Storage at the Middle Pleistocene Transition

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/107845
Información del item - Informació de l'item - Item information
Título: Persistent East Equatorial Pacific Carbon Storage at the Middle Pleistocene Transition
Autor/es: Diz, Paula | Cobelo‐García, Antonio | Hernández‐Almeida, Iván | Corbí, Hugo | Bernasconi, Stefano M.
Grupo/s de investigación o GITE: Cambios Paleoambientales
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ciencias de la Tierra y del Medio Ambiente
Palabras clave: East Equatorial Pacific | Carbon storage | Middle Pleistocene Transition
Área/s de conocimiento: Estratigrafía
Fecha de publicación: jun-2020
Editor: Wiley | American Geophysical Union
Cita bibliográfica: Paleoceanography and Paleoclimatology. 2020, 35(6): e2019PA003789. doi:10.1029/2019PA003789
Resumen: The Middle Pleistocene Transition (MPT, ~641–920 ka) represents a period of the Quaternary climate when, in the absence of substantial changes in orbital forcing, the climate progressively shifted to the 100 ka asymmetrical glacial–interglacial cyclicity characterizing the current climate. The causes of this change remain still uncertain but several lines of evidence suggested the carbon storage of the deep ocean played a relevant role. Here we evaluate the contribution of the eastern deep tropical Pacific to the global ocean carbon sequestration and storage between 760 and 1,040 ka. We present multi‐proxy records for export production and the redox environment at the seabed from Ocean Drilling Program Site 1242 located in the deep East Equatorial Pacific. Our data indicate the development of suboxic bottom waters during early marine isotopic stage (MIS) 23 and glacial MIS 22, suggesting the capture and storage of respired carbon. Redox‐sensitive elements suggest the progressive oxygenation of the deep ocean initiated at the end of the glacial MIS 22, continued across deglaciation and ended with the accomplishment of full interglacial MIS 21. We describe this pattern as a “less complete deglacial ventilation” in that it differs from the mid‐late Pleistocene Pacific deep ocean ventilation pattern which occurs during deglaciations. The ventilation of the deep Pacific Ocean extending beyond deglaciation might have contributed to a persistent deep ocean carbon sequestration, which might have resulted in lowered atmospheric CO2 values that could have influenced the internal response of the climate system contributing to the development of the 100 ka climate variability.
Patrocinador/es: This study was funded by the project CGL2016‐79878‐R (Spanish Ministerio de Economía, Industria y Competividad within the state program Investigación Desarrollo e Innovación Orientada a los Retos de la Sociedad).
URI: http://hdl.handle.net/10045/107845
ISSN: 0883-8305 (Print) | 2572-4525 (Online)
DOI: 10.1029/2019PA003789
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2020 American Geophysical Union
Revisión científica: si
Versión del editor: https://doi.org/10.1029/2019PA003789
Aparece en las colecciones:INV - CP - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailDiz_etal_2020_PaleoceanPaleoclima_final.pdf2,53 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.