Insights into the Oxygen Vacancy Filling Mechanism in CuO/CeO2 Catalysts: A Key Step Toward High Selectivity in Preferential CO Oxidation

Please use this identifier to cite or link to this item:
Información del item - Informació de l'item - Item information
Title: Insights into the Oxygen Vacancy Filling Mechanism in CuO/CeO2 Catalysts: A Key Step Toward High Selectivity in Preferential CO Oxidation
Authors: Davó-Quiñonero, Arantxa | Bailón-García, Esther | López-Rodríguez, Sergio | Juan Juan, Jerónimo | Lozano-Castello, Dolores | García-Melchor, Max | Herrera, Facundo C. | Pellegrin, Eric | Escudero, Carlos | Bueno López, Agustín
Research Group/s: Materiales Carbonosos y Medio Ambiente
Center, Department or Service: Universidad de Alicante. Departamento de Química Inorgánica
Keywords: CO-PROX reaction | Ceria | Copper | Operando NAP−XPS | DFT calculations | Oxygen vacancies | Reaction mechanism
Knowledge Area: Química Inorgánica
Issue Date: 11-May-2020
Publisher: American Chemical Society
Citation: ACS Catalysis. 2020, 10(11): 6532-6545. doi:10.1021/acscatal.0c00648
Abstract: The preferential CO oxidation (CO-PROX) reaction is paramount for the purification of reformate H2-rich streams, where CuO/CeO2 catalysts show promising opportunities. This work sheds light on the lattice oxygen recovery mechanism on CuO/CeO2 catalysts during CO-PROX reaction, which is critical to guarantee both good activity and selectivity, but that is yet to be well understood. Particularly, in situ Raman spectroscopy reveals that oxygen vacancies in the ceria lattice do not form in significant amounts until advanced reaction degrees, whereas pulse O2 isotopic tests confirm the involvement of catalyst oxygen in the CO and H2 oxidation processes occurring at all stages of the CO-PROX reaction (Mars–van Krevelen). Further mechanistic insights are provided by operando near-ambient pressure X-ray photoelectron spectroscopy (NAP–XPS) and near edge X-ray absorption fine structure (NEXAFS) experiments, which prove the gradual CuO reduction and steady oxidized state of Ce ions until the very surface reduction of CeO2 at the point of selectivity loss. Experiments are complemented by density functional theory (DFT) calculations, which reveal a more facile oxygen refill according to the trend CuO > CeO2 > Cu2O. Overall, this work concludes that the oxygen recovery mechanism in CO-PROX switches from a direct mechanism, wherein oxygen restores vacancy sites in the partially reduced CuO particles, to a synergistic mechanism with the participation of ceria once CuxO particles reach a critical reduction state. This mechanistic switch ultimately results in a decrease in CO conversion in favor of the undesired H2 oxidation, which opens-up future research on potential strategies to improve oxygen recovery.
Sponsor: The authors thank the financial support of the Spanish Ministry of Economy and Competitiveness (Project CTQ2015-67597-C2-2-R and grant FJCI-2015-23769), the Spanish Ministry of Education, Culture and Sports (grant FPU14/01178), the Generalitat Valenciana (Project PROMETEO/2018/076) and the EU (FEDER funding). F.C.H. acknowledges the Argentinian National Research Council (CONICET) for financial support.
ISSN: 2155-5435
DOI: 10.1021/acscatal.0c00648
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2020 American Chemical Society
Peer Review: si
Publisher version:
Appears in Collections:INV - MCMA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailDavo-Quinonero_etal_2020_ACSCatal_final.pdfVersión final (acceso restringido)4,64 MBAdobe PDFOpen    Request a copy
ThumbnailDavo-Quinonero_etal_2020_ACSCatal_accepted.pdfEmbargo 12 meses (acceso abierto: 12 mayo 2021)3,33 MBAdobe PDFOpen    Request a copy

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.