Deciphering Pathways for Carotenogenesis in Haloarchaea

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/103887
Información del item - Informació de l'item - Item information
Title: Deciphering Pathways for Carotenogenesis in Haloarchaea
Authors: Giani, Micaela | Miralles-Robledillo, José María | Peiró, Gloria | Pire, Carmen | Martínez-Espinosa, Rosa María
Research Group/s: Bioquímica Aplicada/Applied Biochemistry (AppBiochem)
Center, Department or Service: Universidad de Alicante. Departamento de Agroquímica y Bioquímica
Keywords: Carotenogenesis | Bacterioruberin | Natural pigments | Haloarchaea | Carotenoids | Antioxidant
Knowledge Area: Bioquímica y Biología Molecular
Issue Date: 6-Mar-2020
Publisher: MDPI
Citation: Giani M, Miralles-Robledillo JM, Peiró G, Pire C, Martínez-Espinosa RM. Deciphering Pathways for Carotenogenesis in Haloarchaea. Molecules. 2020; 25(5):1197. doi:10.3390/molecules25051197
Abstract: Bacterioruberin and its derivatives have been described as the major carotenoids produced by haloarchaea (halophilic microbes belonging to the Archaea domain). Recently, different works have revealed that some haloarchaea synthetize other carotenoids at very low concentrations, like lycopene, lycopersene, cis- and trans-phytoene, cis- and trans-phytofluene, neo-β-carotene, and neo-α-carotene. However, there is still controversy about the nature of the pathways for carotenogenesis in haloarchaea. During the last decade, the number of haloarchaeal genomes fully sequenced and assembled has increased significantly. Although some of these genomes are not fully annotated, and many others are drafts, this information provides a new approach to exploring the capability of haloarchaea to produce carotenoids. This work conducts a deeply bioinformatic analysis to establish a hypothetical metabolic map connecting all the potential pathways involved in carotenogenesis in haloarchaea. Special interest has been focused on the synthesis of bacterioruberin in members of the Haloferax genus. The main finding is that in almost all the genus analyzed, a functioning alternative mevalonic acid (MVA) pathway provides isopentenyl pyrophosphate (IPP) in haloarchaea. Then, the main branch to synthesized carotenoids proceeds up to lycopene from which β-carotene or bacterioruberin (and its precursors: monoanhydrobacterioriberin, bisanhydrobacterioruberin, dihydrobisanhydrobacteriuberin, isopentenyldehydrorhodopsin, and dihydroisopenthenyldehydrorhodopsin) can be made.
Sponsor: This work was partially funded by research grants from MINECO Spain (RTI2018-099860-B-I00) and the University of Alicante (VIGROB-309).
URI: http://hdl.handle.net/10045/103887
ISSN: 1420-3049
DOI: 10.3390/molecules25051197
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Peer Review: si
Publisher version: https://doi.org/10.3390/molecules25051197
Appears in Collections:INV - AppBiochem - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2020_Giani_etal_Molecules.pdf3,01 MBAdobe PDFOpen Preview


This item is licensed under a Creative Commons License Creative Commons