Computational Studies of Molecular Materials for Unconventional Energy Conversion: The Challenge of Light Emission by Thermally Activated Delayed Fluorescence

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/103151
Registro completo de metadatos
Registro completo de metadatos
Campo DCValorIdioma
dc.contributorQuímica Cuánticaes_ES
dc.contributor.authorSanz-Rodrigo, Javier-
dc.contributor.authorOlivier, Yoann-
dc.contributor.authorSancho-Garcia, Juan-Carlos-
dc.contributor.otherUniversidad de Alicante. Departamento de Química Físicaes_ES
dc.date.accessioned2020-02-25T09:10:01Z-
dc.date.available2020-02-25T09:10:01Z-
dc.date.issued2020-02-24-
dc.identifier.citationSanz-Rodrigo J, Olivier Y, Sancho-García J-C. Computational Studies of Molecular Materials for Unconventional Energy Conversion: The Challenge of Light Emission by Thermally Activated Delayed Fluorescence. Molecules. 2020; 25(4):1006. doi:10.3390/molecules25041006es_ES
dc.identifier.issn1420-3049-
dc.identifier.urihttp://hdl.handle.net/10045/103151-
dc.description.abstractIn this paper we describe the mechanism of light emission through thermally activated delayed fluorescence (TADF)—a process able to ideally achieve 100% quantum efficiencies upon fully harvesting the energy of triplet excitons, and thus minimizing the energy loss of common (i.e., fluorescence and phosphorescence) luminescence processes. If successful, this technology could be exploited for the manufacture of more efficient organic light-emitting diodes (OLEDs) made of only light elements for multiple daily applications, thus contributing to the rise of a sustainable electronic industry and energy savings worldwide. Computational and theoretical studies have fostered the design of these all-organic molecular emitters by disclosing helpful structure–property relationships and/or analyzing the physical origin of this mechanism. However, as the field advances further, some limitations have also appeared, particularly affecting TD-DFT calculations, which have prompted the use of a variety of methods at the molecular scale in recent years. Herein we try to provide a guide for beginners, after summarizing the current state-of-the-art of the most employed theoretical methods focusing on the singlet–triplet energy difference, with the additional aim of motivating complementary studies revealing the stronger and weaker aspects of computational modelling for this cutting-edge technology.es_ES
dc.description.sponsorshipComputational resources were provided by: (i) the University of Alicante under Grant No. VIGROB-108; and (ii) the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifiques de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11.es_ES
dc.languageenges_ES
dc.publisherMDPIes_ES
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).es_ES
dc.subjectTADFes_ES
dc.subjectOLEDses_ES
dc.subjectExcited-states energy conversiones_ES
dc.subjectSinglet–triplet energy gapes_ES
dc.subjectTD-DFTes_ES
dc.subject.otherQuímica Físicaes_ES
dc.titleComputational Studies of Molecular Materials for Unconventional Energy Conversion: The Challenge of Light Emission by Thermally Activated Delayed Fluorescencees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.3390/molecules25041006-
dc.relation.publisherversionhttps://doi.org/10.3390/molecules25041006es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
Aparece en las colecciones:INV - QC - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2020_Sanz-Rodrigo_etal_Molecules.pdf1,41 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons