Biophysical and physiological processes causing oxygen loss from coral reefs

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/99868
Información del item - Informació de l'item - Item information
Título: Biophysical and physiological processes causing oxygen loss from coral reefs
Autor/es: Silveira, Cynthia B. | Luque, Antoni | Roach, Ty N.F. | Villela, Helena | Barno, Adam | Green, Kevin | Reyes, Brandon | Rubio-Portillo, Esther | Le, Tram | Mead, Spencer | Hatay, Mark | Vermeij, Mark J.A. | Takeshita, Yuichiro | Haas, Andreas | Bailey, Barbara | Rohwer, Forest
Grupo/s de investigación o GITE: Ecología Microbiana Molecular
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Fisiología, Genética y Microbiología
Palabras clave: Microbial | Coral reefs | Oxygen loss
Área/s de conocimiento: Microbiología
Fecha de publicación: 3-dic-2019
Editor: eLife Sciences Publications
Cita bibliográfica: eLife. 2019, 8:e49114. doi:10.7554/eLife.49114
Resumen: The microbialization of coral reefs predicts that microbial oxygen consumption will cause reef deoxygenation. Here we tested this hypothesis by analyzing reef microbial and primary producer oxygen metabolisms. Metagenomic data and in vitro incubations of bacteria with primary producer exudates showed that fleshy algae stimulate incomplete carbon oxidation metabolisms in heterotrophic bacteria. These metabolisms lead to increased cell sizes and abundances, resulting in bacteria consuming 10 times more oxygen than in coral incubations. Experiments probing the dissolved and gaseous oxygen with primary producers and bacteria together indicated the loss of oxygen through ebullition caused by heterogenous nucleation on algae surfaces. A model incorporating experimental production and loss rates predicted that microbes and ebullition can cause the loss of up to 67% of gross benthic oxygen production. This study indicates that microbial respiration and ebullition are increasingly relevant to reef deoxygenation as reefs become dominated by fleshy algae.
Patrocinador/es: This work was funded by the Gordon and Betty Moore Foundation (grant 3781 to FR) and Spruance Foundation. CBS was funded by CNPq (234702) and Spruance Foundation. TNFR was supported by the NSF (G00009988).
URI: http://hdl.handle.net/10045/99868
ISSN: 2050-084X
DOI: 10.7554/eLife.49114
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © Silveira et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Revisión científica: si
Versión del editor: https://doi.org/10.7554/eLife.49114
Aparece en las colecciones:INV - EMM - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2019_Silveira_etal_eLife.pdf2,2 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons