Energy loss of H+ and H2+ beams in carbon nanotubes: a joint experimental and simulation study

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/96290
Información del item - Informació de l'item - Item information
Título: Energy loss of H+ and H2+ beams in carbon nanotubes: a joint experimental and simulation study
Autor/es: Valdés, Jorge E. | Celedón, Carlos | Mery, Mario | Uribe, Juan D. | Segura, Rodrigo | Arista, Néstor R. | Abril, Isabel | García Molina, Rafael
Grupo/s de investigación o GITE: Interacción de Partículas Cargadas con la Materia
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Energy loss | H+ and H2+ beams | Carbon nanotubes
Área/s de conocimiento: Física Aplicada
Fecha de publicación: sep-2019
Editor: Springer Berlin Heidelberg
Cita bibliográfica: The European Physical Journal D. 2019, 73:201. doi:10.1140/epjd/e2019-100106-2
Resumen: Carbon nanotube properties can be modified by ion irradiation; therefore it is important to know the manner in which ions deposit energy (how much and where) in the nanotubes. In this work, we have studied, experimentally and with a simulation code, the irradiation of multi-walled carbon nanotubes (MWCNT), supported on a holey amorphous carbon (a-C) substrate, with low energy (2–10 keV/u) H+ and H2+ molecular beams, impinging perpendicularly to the MWCNT axis. The energy distribution of protons traversing the nanotubes (either from the H+ beam or dissociated from the H2+ beam) was measured by the transmission technique in the forward direction. Two well-differentiated peaks appear in the experimental energy-loss distribution of the fragments dissociated from the molecular H2+ beam, in correspondence to the ones detected with the proton beam. One is the low-energy loss peak (LELP), which has a symmetric width; the other is the high-energy loss peak (HELP), which shows an asymmetric broadening towards larger energy loss than the corresponding proton energy distribution. A semi-classical simulation, accounting for the main interaction processes (both elastic and inelastic), of the proton trajectories through the nanotube and the supporting substrate has been done, in order to elucidate the origin of these structures in the energy spectra. Regarding the H+ energy spectrum, the LELP corresponds to projectiles that travel in quasi-channelling motion through the most outer walls of the nanotubes and then pass through the substrate holes, whereas the HELP results mostly from projectiles traversing only the a-C substrate, with the asymmetry broadening being due to a minor contribution of those protons that cross the a-C substrate after exiting the nanotube. The broadening of the peaks corresponding to dissociated fragments, with respect to that of the isolated protons, is the result of vicinage effects between the fragments, when travelling in quasi-channelling conditions through the outer layers of the nanotube, and Coulomb explosion just after exiting the target. The excellent agreement between the measured and the simulated energy spectra of the H+ beam validates our simulation code in order to predict the energy deposited by ion beams in carbon nanotubes.
Patrocinador/es: This work has been financially supported by Fondecyt 1100759, Fondecyt 1121203 and USM-DGIP 11.11.11, Anillo ACT1108, Proyecto Basal FB0821 - CONICYT, the Spanish Ministerio de Economía y Competitividad and European Regional Development Fund (Projects FIS2014-58849-P and PGC2018-096788-B-I00), and Fundación Séneca (Project No. 19907/GERM/15).
URI: http://hdl.handle.net/10045/96290
ISSN: 1434-6060 (Print) | 1434-6079 (Online)
DOI: 10.1140/epjd/e2019-100106-2
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019
Revisión científica: si
Versión del editor: https://doi.org/10.1140/epjd/e2019-100106-2
Aparece en las colecciones:INV - IPCM - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2019_Valdes_etal_EurPhysJD_final.pdfVersión final (acceso restringido)2,37 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2019_Valdes_etal_EurPhysJD_revised.pdfVersión revisada (acceso abierto)369,36 kBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.