Probing quantum coherence in single-atom electron spin resonance

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/74488
Información del item - Informació de l'item - Item information
Título: Probing quantum coherence in single-atom electron spin resonance
Autor/es: Willke, Philip | Paul, William | Natterer, Fabian D. | Yang, Kai | Bae, Yujeong | Choi, Taeyoung | Fernández-Rossier, Joaquín | Heinrich, Andreas J. | Lutz, Christoper P.
Grupo/s de investigación o GITE: Grupo de Nanofísica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Quantum coherence | Single-atom electron | Spin resonance
Área/s de conocimiento: Física de la Materia Condensada
Fecha de publicación: 16-feb-2018
Editor: American Association for the Advancement of Science
Cita bibliográfica: Science Advances. 2018, 4(2): eaaq1543. doi:10.1126/sciadv.aaq1543
Resumen: Spin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts. Recently, spin-polarized scanning tunneling microscopy (STM), in combination with electron spin resonance (ESR), allowed the study of single adatoms and inter-atomic coupling with an unprecedented combination of spatial and energy resolution. We elucidate and control the interplay of an Fe single spin with its atomic-scale environment by precisely tuning the phase coherence time T2 using the STM tip as a variable electrode. We find that the decoherence rate is the sum of two main contributions. The first scales linearly with tunnel current and shows that, on average, every tunneling electron causes one dephasing event. The second, effective even without current, arises from thermally activated spin-flip processes of tip spins. Understanding these interactions allows us to maximize T2 and improve the energy resolution. It also allows us to maximize the amplitude of the ESR signal, which supports measurements even at elevated temperatures as high as 4 K. Thus, ESR-STM allows control of quantum coherence in individual, electrically accessible spins.
Patrocinador/es: We acknowledge financial support from the Office of Naval Research. P.W. acknowledges financial support from the German academic exchange service. P.W., Y.B., and A.J.H. acknowledge support from the Institute for Basic Science under grant IBS-R027-D1. F.D.N. appreciates support from the Swiss National Science Foundation under project number PZ00P2_167965. W.P. thanks the Natural Sciences and Engineering Research Council of Canada for fellowship support. J.F.-R. thanks National Funds through Fundação para a Ciência e a Tecnologia, under project no. PTDC/FIS-NAN/4662/2014 (016656).
URI: http://hdl.handle.net/10045/74488
ISSN: 2375-2548
DOI: 10.1126/sciadv.aaq1543
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Revisión científica: si
Versión del editor: https://doi.org/10.1126/sciadv.aaq1543
Aparece en las colecciones:INV - Grupo de Nanofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2018_Willke_etal_SciAdv.pdf526,16 kBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons