Permanent modifications in silica produced by ion-induced high electronic excitation: experiments and atomistic simulations

Por favor, use este identificador para citar o enlazar este ítem:
Información del item - Informació de l'item - Item information
Título: Permanent modifications in silica produced by ion-induced high electronic excitation: experiments and atomistic simulations
Autor/es: Rivera, Antonio | Olivares, José | Prada, Alejandro | Crespillo, Miguel L. | Caturla, Maria J. | Bringa, Eduardo M. | Perlado, José M. | Peña-Rodríguez, Ovidio
Grupo/s de investigación o GITE: Física de la Materia Condensada | Grupo de Nanofísica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Silica | Irradiation | Ion-induced | High electronic excitation
Área/s de conocimiento: Física Aplicada
Fecha de publicación: 6-sep-2017
Editor: Springer Nature
Cita bibliográfica: Scientific Reports. 2017, 7: 10641. doi:10.1038/s41598-017-11182-4
Resumen: The irradiation of silica with ions of specific energy larger than ~0.1 MeV/u produces very high electronic excitations that induce permanent changes in the physical, chemical and structural properties and give rise to defects (colour centres), responsible for the loss of sample transparency at specific bands. This type of irradiation leads to the generation of nanometer-sized tracks around the ion trajectory. In situ optical reflection measurements during systematic irradiation of silica samples allowed us to monitor the irradiation-induced compaction, whereas ex situ optical absorption measurements provide information on colour centre generation. In order to analyse the results, we have developed and validated an atomistic model able to quantitatively explain the experimental results. Thus, we are able to provide a consistent explanation for the size of the nanotracks, the velocity and thresholding effects for track formation, as well as, the colour centre yield per ion and the colour centre saturation density. In this work we will discuss the different processes involved in the permanent modification of silica: collective atomic motion, bond breaking, pressure-driven atom rearrangement and ultra-fast cooling. Despite the sudden lattice energy rise is the triggering and dominant step, all these processes are important for the final atomic configuration.
Patrocinador/es: The authors acknowledge the computer resources and technical assistance provided by CESVIMA (UPM), funding by Spanish MINECO through project ENE2015-70300-C3-3-R, funding by EUROfusion Consortium through project AWP15-ENR-01/CEA-02 and funding by Madrid Region (CAM) through project Technofusion (II)-CM (S2013/MAE-2745). E.M.B. thanks support from PICT-2014-0696 (ANPCyT), and SeCTyP-UNCuyo grant 2016-0003.
ISSN: 2045-2322
DOI: 10.1038/s41598-017-11182-4
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
Revisión científica: si
Versión del editor:
Aparece en las colecciones:INV - Física de la Materia Condensada - Artículos de Revistas
INV - Grupo de Nanofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2017_Rivera_etal_SciRep.pdf4,96 MBAdobe PDFAbrir Vista previa

Este ítem está licenciado bajo Licencia Creative Commons Creative Commons