Hydrothermal carbonization of lignocellulosic biomass: Effect of process conditions on hydrochar properties

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/58108
Información del item - Informació de l'item - Item information
Título: Hydrothermal carbonization of lignocellulosic biomass: Effect of process conditions on hydrochar properties
Autor/es: Mäkelä, Mikko | Benavente Domenech, Verónica | Fullana, Andres
Grupo/s de investigación o GITE: Residuos, Energía, Medio Ambiente y Nanotecnología (REMAN)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Química | Universidad de Alicante. Instituto Universitario de Ingeniería de los Procesos Químicos
Palabras clave: Biosolids | Experimental design | Hydrothermal treatment | Response surface methodology | Sludge
Área/s de conocimiento: Ingeniería Química
Fecha de publicación: 1-oct-2015
Editor: Elsevier
Cita bibliográfica: Applied Energy. 2015, 155: 576-584. doi:10.1016/j.apenergy.2015.06.022
Resumen: Although hydrothermal carbonization of biomass components is known to be mainly governed by reaction temperature, consistent reports on the effect and statistical significance of process conditions on hydrochar properties are still lacking. The objective of this research was to determine the importance and significance of reaction temperature, retention time and solid load on the properties of hydrochar produced from an industrial lignocellulosic sludge residue. According to the results, reaction temperature and retention time had a statistically significant effect on hydrochar ash content, solid yield, carbon content, O/C-ratio, energy densification and energy yield as reactor solid load was statistically insignificant for all acquired models within the design range. Although statistically significant, the effect of retention time was 3–7 times lower than that of reaction temperature. Predicted dry ash-free solid yields of attained hydrochar decreased to approximately 40% due to the dissolution of biomass components at higher reaction temperatures, as respective oxygen contents were comparable to subbituminous coal. Significant increases in the carbon contents of hydrochar led to predicted energy densification ratios of 1–1.5 with respective energy yields of 60–100%. Estimated theoretical energy requirements of carbonization were dependent on the literature method used and mainly controlled by reaction temperature and reactor solid load. The attained results enable future prediction of hydrochar properties from this feedstock and help to understand the effect of process conditions on hydrothermal treatment of lignocellulosic biomass.
Patrocinador/es: This work was performed in cooperation with SCA Obbola AB with partial funding from SP Processum AB.
URI: http://hdl.handle.net/10045/58108
ISSN: 0306-2619 (Print) | 1872-9118 (Online)
DOI: 10.1016/j.apenergy.2015.06.022
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2015 Elsevier Ltd.
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1016/j.apenergy.2015.06.022
Aparece en las colecciones:INV - REMAN - Artículos de Revistas
INV - I4CE - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2015_Makela_etal_ApplEnergy_final.pdfVersión final (acceso restringido)2,18 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.