Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/53172
Información del item - Informació de l'item - Item information
Title: Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids
Authors: Hanc-Scherer, Florin A. | Montiel López, Miguel Ángel | Montiel, Vicente | Herrero, Enrique | Sánchez-Sánchez, Carlos M.
Research Group/s: Electroquímica de Superficies | Electroquímica Aplicada y Electrocatálisis
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: Electrochemical reduction | Carbon dioxide | Imidazolium based | Ionic liquids | Platinum electrodes
Knowledge Area: Química Física
Issue Date: 2015
Publisher: Royal Society of Chemistry
Citation: Physical Chemistry Chemical Physics. 2015, 17: 23909-23916. doi:10.1039/C5CP02361K
Abstract: The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim+][NTf2−], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH–CO2−] by a radical–radical coupling after the simultaneous reduction of CO2 and [C2mim+]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim+] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH–CO2−] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H+][NTf2−], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim+][NTf2−], with Pt(110) being the most active electrode studied.
Sponsor: This work has been partially financed by Generalitat Valenciana through Ayudas para la realización de proyectos de I+D para grupos de investigación emergentes (GV/2014/096) and by the MICINN (project CTQ2013-48280-C3-3-R).
URI: http://hdl.handle.net/10045/53172
ISSN: 1463-9076 (Print) | 1463-9084 (Online)
DOI: 10.1039/C5CP02361K
Language: eng
Type: info:eu-repo/semantics/article
Rights: © Royal Society of Chemistry 2015
Peer Review: si
Publisher version: http://dx.doi.org/10.1039/C5CP02361K
Appears in Collections:INV - LEQA - Artículos de Revistas
INV - EQSUP - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2015_Hanc-Scherer_etal_PCCP_final.pdfVersión final (acceso restringido)1,99 MBAdobe PDFOpen    Request a copy
Thumbnail2015_Hanc-Scherer_etal_PCCP_rev.pdfVersión revisada (acceso abierto)447,08 kBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.