Performance analysis of multi-core CPUs and GPU computing on SF- FDTD scheme for third order nonlinear materials and periodic media

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/30301
Información del item - Informació de l'item - Item information
Title: Performance analysis of multi-core CPUs and GPU computing on SF- FDTD scheme for third order nonlinear materials and periodic media
Authors: Francés, Jorge | Bleda, Sergio | Tervo, Jani | Neipp, Cristian | Márquez, Andrés | Pascual, Inmaculada | Beléndez, Augusto
Research Group/s: Holografía y Procesado Óptico
Center, Department or Service: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Departamento de Óptica, Farmacología y Anatomía | Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías | University of Eastern Finland. Department of Physics and Mathematics
Keywords: Electromagnetic analysis | Finite-Difference Time-Domain | Finite Element Method | Graphics processing units
Knowledge Area: Física Aplicada | Óptica
Date Created: May-2013
Issue Date: 24-Jun-2013
Publisher: CMMSE
Citation: FRANCÉS MONLLOR, Jorge, et al. “Performance analysis of multi-core CPUs and GPU computing on SF- FDTD scheme for third order nonlinear materials and periodic media”. En: CMMSE 2013 : Proceedings of the 13th International Conference on Mathematical Methods in Science and Engineering, Almería, Spain, June 24-26, 2013 / ed. I.P. Hamiltion & J. Vigo-Aguiar. Almería : CMMSE, 2013. ISBN 978-84-616-2723-3, pp. 693-704
Abstract: The Split-Field Finite-Difference Time-Domain (SF-FDTD) scheme is an optimal formulation for modeling periodic optical media by means of a single unit period. The split-field components and the Periodic Boundary Condition (BPC) in the periodic boundaries allow to obtain successful results even with oblique angle of incidence. Under this situation the standard FDTD scheme requires multiple periods and smaller spatial and time resolutions in order to provide accurate results, thus degrading the computational performance of this method. However, considering nonlinear materials in SF-FDTD requires an iterative fixed-point procedure for solving the nonlinear system of equations. Furthermore, complex notation is needed for the split-field components and for correctly apply PBC. Although SF-FDTD is more appropriate for modeling periodic media than the standard FDTD scheme, the addition of nonlinear media degrades the overall performance of this method. In this work, the SF-FDTD formulation for third-order nonlinear materials is implemented taking into consideration parallel hardware architectures. The influence of the fixed-point procedure has been analyzed in both multi-core Central Processing Units (CPUs) and Graphic Processing Units (GPUs).The results show that highly optimized CPU version is competitive amongst GPU computing. Both optimized versions are not dramatically affected by the iterative process due to massive usage of their inner cache memories.
Sponsor: This work was supported by the “Ministerio de Economía y Competitividad” of Spain under projects FIS2011-29803-C02-01, FIS2011-29803-C02-02 and by the “Generalitat Valenciana” of Spain under projects PROMETEO/2011/021 and ISIC/2012/013.
URI: http://hdl.handle.net/10045/30301
ISBN: 978-84-616-2723-3
Language: eng
Type: info:eu-repo/semantics/conferenceObject
Rights: © Copyright 2013 CMMSE
Peer Review: si
Appears in Collections:INV - GHPO - Comunicaciones a Congresos, Conferencias, etc.

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailCMMSE_CaboGata_p_693_2013.pdf1,16 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.