Exceptional performance of Fe@carbon-rich nanoparticles prepared via hydrothermal carbonization of oil mill wastes for H2S removal

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/142505
Información del item - Informació de l'item - Item information
Título: Exceptional performance of Fe@carbon-rich nanoparticles prepared via hydrothermal carbonization of oil mill wastes for H2S removal
Autor/es: Abid, Meriem | Garcia, Ruben | Martinez-Escandell, Manuel | Fullana, Andres | Silvestre-Albero, Joaquín
Grupo/s de investigación o GITE: Materiales Avanzados | Ingeniería para la Economía Circular (I4CE)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Departamento de Ingeniería Química | Universidad de Alicante. Instituto Universitario de Materiales | Universidad de Alicante. Instituto Universitario de Ingeniería de los Procesos Químicos
Palabras clave: Hydrothermal carbonization | Core-shell nanoparticles | Fe@C | H2S
Fecha de publicación: 28-abr-2024
Editor: Elsevier
Cita bibliográfica: Chemosphere. 2024, 358: 142140. https://doi.org/10.1016/j.chemosphere.2024.142140
Resumen: Carbon-encapsulated iron oxide nanoparticles (CE-nFe) have been obtained from an industrial waste (oil mill wastewater-OMW, as a carbonaceous source), and using iron sulfate as metallic precursor. In an initial step, the hydrochar obtained has been thermally activated under an inert atmosphere at three different temperatures (600°C, 800°C and 1000°C). The thermal treatment promotes the development of core-shell nanoparticles, with an inner core of α-Fe/Fe3O4 surrounded by a well-defined graphite shell. Temperatures above 800°C are needed to promote the graphitization of the carbonaceous species, a process promoted by iron nanoparticles through the dissolution, diffusion and growth of the carbon nanostructures on the outer shell. Breakthrough column tests show that CE-nFe exhibit an exceptional performance for H2S removal with a breakthrough capacity larger than 0.5-0.6 g H2S/gcatalyst after 3 days experiment. Experimental results anticipate the crucial role of humidity and oxygen in the adsorption/catalytic performance. Compared to some commercial samples, these results constitute a three-fold increase in the catalytic performance under similar experimental conditions.
Patrocinador/es: J.S.A acknowledges financial support from MCIN/AEI/10.13039/501100011033 and EU NextGeneration/PRTR (Project PCI2020-111968/3D-Photocat), MCIN (Project PID2019-108453GB-C21) and Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital, Generalitat Valenciana (Project CIPROM/2021/022). M.A. acknowledges financial support from the Algerian Ministry of Higher Education and Scientific Research.
URI: http://hdl.handle.net/10045/142505
ISSN: 0045-6535 (Print) | 1879-1298 (Online)
DOI: 10.1016/j.chemosphere.2024.142140
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.chemosphere.2024.142140
Aparece en las colecciones:INV - I4CE - Artículos de Revistas
INV - LMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailAbid_etal_2024_Chemosphere.pdf3,83 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.