Decoupled supercapacitive electrolyzer for membrane-free water splitting

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/141402
Información del item - Informació de l'item - Item information
Título: Decoupled supercapacitive electrolyzer for membrane-free water splitting
Autor/es: Toledo-Carrillo, Esteban A. | García-Rodríguez, Mario | Sánchez-Moren, Lorena M. | Dutta, Joydeep
Grupo/s de investigación o GITE: Electrocatálisis y Electroquímica de Polímeros
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Decoupled supercapacitive electrolyzer | Membrane-free water splitting
Fecha de publicación: 6-mar-2024
Editor: American Association for the Advancement of Science
Cita bibliográfica: Science Advances. 2024, 10: eadi3180. https://doi.org/10.1126/sciadv.adi3180
Resumen: Green hydrogen production via water splitting is vital for decarbonization of hard-to-abate industries. Its integration with renewable energy sources remains to be a challenge, due to the susceptibility to hazardous gas mixture during electrolysis. Here, we report a hybrid membrane-free cell based on earth-abundant materials for decoupled hydrogen production in either acidic or alkaline medium. The design combines the electrocatalytic reactions of an electrolyzer with a capacitive storage mechanism, leading to spatial/temporal separation of hydrogen and oxygen gases. An energy efficiency of 69% lower heating value (48 kWh/kg) at 10 mA/cm2 (5 cm–by–5 cm cell) was achieved using cobalt-iron phosphide bifunctional catalyst with 99% faradaic efficiency at 100 mA/cm2. Stable operation over 20 hours in alkaline medium shows no apparent electrode degradation. Moreover, the cell voltage breakdown reveals that substantial improvements can be achieved by tunning the activity of the bifunctional catalyst and improving the electrodes conductivity. The cell design offers increased flexibility and robustness for hydrogen production.
Patrocinador/es: E.A.T.-C. would like to thank the National Research and Development Agency of Chile (ANID) for the doctoral scholarship “Beca Chile” 2018-72190682. M.G.-R. and L.M.S.-M. would like to thank Campus Iberus for Erasmus+ KA103 scholarship and Facultad de Ciencias of University of Alicante for the internship scholarship. J.D. would like to acknowledge partial financing from Vinnova (diary no. 2021-02313) and Åforsk (ref. no. 21-105).
URI: http://hdl.handle.net/10045/141402
ISSN: 2375-2548
DOI: 10.1126/sciadv.adi3180
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2024 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).
Revisión científica: si
Versión del editor: https://doi.org/10.1126/sciadv.adi3180
Aparece en las colecciones:INV - GEPE - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailToledo-Carrillo_etal_2024_SciAdv.pdf3,26 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.