Path Planner for Autonomous Exploration of Underground Mines by Aerial Vehicles

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/139802
Información del item - Informació de l'item - Item information
Título: Path Planner for Autonomous Exploration of Underground Mines by Aerial Vehicles
Autor/es: Rubio-Sierra, Carlos | Domínguez, Diego | Gonzalo, Jesús | Escapa, Alberto
Grupo/s de investigación o GITE: Geodesia Espacial y Dinámica Espacial
Palabras clave: Path planner | Autonomous exploration | Underground mines | Aerial robot | LIDAR-based navigator | Obstacle avoidance
Fecha de publicación: 30-jul-2020
Editor: MDPI
Cita bibliográfica: Rubio-Sierra C, Domínguez D, Gonzalo J, Escapa A. Path Planner for Autonomous Exploration of Underground Mines by Aerial Vehicles. Sensors. 2020; 20(15):4259. https://doi.org/10.3390/s20154259
Resumen: This paper presents a path planner solution that makes it possible to autonomously explore underground mines with aerial robots (typically multicopters). In these environments the operations may be limited by many factors like the lack of external navigation signals, the narrow passages and the absence of radio communications. The designed path planner is defined as a simple and highly computationally efficient algorithm that, only relying on a laser imaging detection and ranging (LIDAR) sensor with Simultaneous localization and mapping (SLAM) capability, permits the exploration of a set of single-level mining tunnels. It performs dynamic planning based on exploration vectors, a novel variant of the open sector method with reinforced filtering. The algorithm incorporates global awareness and obstacle avoidance modules. The first one prevents the possibility of getting trapped in a loop, whereas the second one facilitates the navigation along narrow tunnels. The performance of the proposed solution has been tested in different study cases with a Hardware-in-the-loop (HIL) simulator developed for this purpose. In all situations the path planner logic performed as expected and the used routing was optimal. Furthermore, the path efficiency, measured in terms of traveled distance and used time, was high when compared with an ideal reference case. The result is a very fast, real-time, and static memory capable algorithm, which implemented on the proposed architecture presents a feasible solution for the autonomous exploration of underground mines.
Patrocinador/es: This work has been possible thanks to the support of TELICE COMET to the Aerospace Research Group of the Universidad de León through different research contracts.
URI: http://hdl.handle.net/10045/139802
ISSN: 1424-8220
DOI: 10.3390/s20154259
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.3390/s20154259
Aparece en las colecciones:INV - GEDE - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailRubio-Sierra_etal_2020_Sensors.pdf3,04 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.