Efficient and selective glycerol electrolysis for the co-production of lactic acid and hydrogen with multi-component Pt/C-zeolite catalyst

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/138452
Información del item - Informació de l'item - Item information
Título: Efficient and selective glycerol electrolysis for the co-production of lactic acid and hydrogen with multi-component Pt/C-zeolite catalyst
Autor/es: Aslam, Muhammad | Navlani-García, Miriam | Cazorla-Amorós, Diego | Luo, Hui
Grupo/s de investigación o GITE: Materiales Carbonosos y Medio Ambiente
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Glycerol electrolysis | Lactic acid | Hydrogen | Pt/C-zeolite catalyst
Fecha de publicación: 9-nov-2023
Editor: IOP Publishing
Cita bibliográfica: Journal of Physics: Materials. 2024, 7: 015002. https://doi.org/10.1088/2515-7639/ad0561
Resumen: Among various electrochemical reactions to produce fuels and chemicals, glycerol electrolysis to co-produce hydrogen and lactic acid has received great attention. However, studies have shown the benchmark Pt based catalysts are insufficient in selectively catalysing the glycerol to lactic acid transformation, resulting in a low yield of lactic acid. Here we report a study on glycerol electrolysis with anion-exchange membrane electrode assembly electrolyser. The reaction conditions including mass transport, temperature, current density and KOH concentration were optimised, among which temperature played a significant role in facilitating the reaction rate and thermodynamics. With the optimised condition a multicomponent Pt/C-zeolite electrocatalyst system (Pt/C-CBV600) was developed and tested, which is capable to increase the lactic acid selectivity to 57.3% from the 33.8% with standalone Pt/C. Although the detailed mechanism required further investigation, it is hypothesised that the CBV600 zeolite with abundant Lewis acid surface sites can effectively bind the dihydroxyacetone intermediate, and drive the reaction towards pyruvaldehyde heterogeneously, the key step to form lactic acid.
Patrocinador/es: The work was supported by a donation from Mr Mark Richardson to the Department of Chemical Engineering at Imperial College London. H L thank Professor Magda Titirici for providing the lab equipment. M N G and D C A thank PID2021-123079OB-I00 Project Funded by MCIN/AEI/10.13039/501100011033 and 'ERDF A way of making Europe'.
URI: http://hdl.handle.net/10045/138452
ISSN: 2515-7639
DOI: 10.1088/2515-7639/ad0561
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2023 The Author(s). Published by IOP Publishing Ltd. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Revisión científica: si
Versión del editor: https://doi.org/10.1088/2515-7639/ad0561
Aparece en las colecciones:INV - MCMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailAslam_etal_2024_JPhysMater.pdf2,04 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.