Anodic abatement of glyphosate on Pt-doped SnO2–Sb electrodes promoted by pollutant-dopant electrocatalytic interactions

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/138431
Información del item - Informació de l'item - Item information
Título: Anodic abatement of glyphosate on Pt-doped SnO2–Sb electrodes promoted by pollutant-dopant electrocatalytic interactions
Autor/es: Berenguer Betrián, Raúl | Fernández-Aguirre, Maribel G. | Beaumont, Samuel | Huerta Arráez, Francisco | Morallon, Emilia
Grupo/s de investigación o GITE: Electrocatálisis y Electroquímica de Polímeros
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Glyphosate | Anodic oxidation | Tin oxide electrodes | Electrocatalysis | Water treatment
Fecha de publicación: 6-nov-2023
Editor: Elsevier
Cita bibliográfica: Chemosphere. 2024, 346: 140635. https://doi.org/10.1016/j.chemosphere.2023.140635
Resumen: The development of non-expensive and efficient technologies for the elimination of Glyphosate (GLP) in water is of great interest for society today. Here we explore novel electrocatalytic effects to boost the anodic oxidation of GLP on Pt-doped (3-13met%) SnO2–Sb electrodes. The study reveals the formation of well disperse Pt nanophases in SnO2–Sb that electrocatalyze GLP elimination. Cyclic voltammetry and in-situ spectroelectrochemical FTIR analysis evidence carboxylate-mediated Pt-GLP electrocatalytic interactions to promote oxidation and mineralization of this herbicide. Interestingly, under electrolytic conditions Pt effects are proposed to synergistically cooperate with hydroxyl radicals in GLP oxidation. Furthermore, the formation of by-products has been followed by different techniques, and the studied electrodes are compared to commercial Si/BDD and Ti/Pt anodes and tested for a real GLP commercial product. Results show that, although BDD is the most effective anode, the SnO2–Sb electrode with a 13 met% Pt can mineralize GLP with lower energy consumption.
Patrocinador/es: The authors gratefully acknowledge the EDGJID/2021/330 contract (Generalitat Valenciana, Spain), as well as the RYC-2017-23618 contract and TED2021-131028B–I00 project funded by MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” and “European Union NextGeneration EU/PRTR”.
URI: http://hdl.handle.net/10045/138431
ISSN: 0045-6535 (Print) | 1879-1298 (Online)
DOI: 10.1016/j.chemosphere.2023.140635
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.chemosphere.2023.140635
Aparece en las colecciones:INV - GEPE - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailBerenguer_etal_2023_Chemosphere.pdf6,49 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.