Effect of electrogenerated random defects on Pt(111) surface over methanol electrooxidation: Electrochemical and spectroscopic studies

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/137068
Información del item - Informació de l'item - Item information
Title: Effect of electrogenerated random defects on Pt(111) surface over methanol electrooxidation: Electrochemical and spectroscopic studies
Authors: dos Santos, Evanny L. | Melle, Gabriel | Rodes, Antonio | Feliu, Juan M. | Herrero, Enrique | Del Colle, Vinicius
Research Group/s: Electroquímica de Superficies | Grupo de Espectroelectroquímica y Modelización (GEM)
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: Methanol electro-oxidation reaction | Pt(111) | Random defects | Cyclic Voltammetry | Chronoamperometry | Potential oscillations | In situ FTIR
Issue Date: 5-Sep-2023
Publisher: Elsevier
Citation: Electrochimica Acta. 2023, 468: 143128. https://doi.org/10.1016/j.electacta.2023.143128
Abstract: In the present paper, the influence of electrogenerated (110) defects in the methanol oxidation reaction (MOR) on a Pt(111) electrode has been studied. It is shown that methanol oxidation is favored at the defected surfaces as evidenced by the displacement of the onset potential to lower values and the increase of the peak current density. The currents obtained by transient curves at short times (0.015 – 0.5 s) at 0.50 V vs RHE demonstrate the faster formation of strongly adsorbed species on disordered surfaces when compared to Pt(111). On the other hand, for long-term transient currents (600 s), the surface with a higher surface density of (110) defects presented the best activity among all ones studied. Galvanostatic results showed that potential oscillations emerged only on disordered surfaces. The large induction time up to the beginning of the oscillations as well as the lower frequency registered on these surfaces demonstrates the enhancement of CO formation on defects. This point is confirmed by in situ FTIR experiments. From the results obtained by using electrochemical techniques, it was possible to infer that the dehydration rate constant (kdh) and the rate constant for CO oxidation (kCO) are affected by the number of (110) defects, which give rise to kCO and kdh values higher than those obtained for Pt(111).
Sponsor: V.D.C. gratefully acknowledges financial support from FAPEAL (process E:60030.0000002494/2022). VDC (Grant No. 312788/2022-3) acknowledges CNPq for financial support. E.L. dos Santos especially thanks CNPq for the scholarship (143931/2020-2). E.H and A.R. gratefully acknowledge financial support from Ministerio de Ciencia e Innovación (Project PID2022-137350NB-I00) and Generalitat Valenciana (Project PROMETEO/2020/063).
URI: http://hdl.handle.net/10045/137068
ISSN: 0013-4686 (Print) | 1873-3859 (Online)
DOI: 10.1016/j.electacta.2023.143128
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2023 Elsevier Ltd.
Peer Review: si
Publisher version: https://doi.org/10.1016/j.electacta.2023.143128
Appears in Collections:INV - EQSUP - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnaildos-Santos_etal_2023_ElectrochimActa_accepted.pdfEmbargo 24 meses (acceso abierto: 6 sept. 2025)2,13 MBAdobe PDFOpen    Request a copy
Thumbnaildos-Santos_etal_2023_ElectrochimActa_final.pdfVersión final (acceso restringido)1,66 MBAdobe PDFOpen    Request a copy

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.