Shack-Hartmann wavefront sensor applications in holographic imaging systems

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/134992
Información del item - Informació de l'item - Item information
Título: Shack-Hartmann wavefront sensor applications in holographic imaging systems
Autor/es: Lloret, Tomás | Morales-Vidal, Marta | García-Vázquez, José Carlos | Nieto-Rodríguez, Belén | Ramirez, Manuel G. | Navarro-Fuster, Víctor | Pascual, Inmaculada
Grupo/s de investigación o GITE: Holografía y Procesado Óptico
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Óptica, Farmacología y Anatomía | Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías
Palabras clave: Shack-Hartmann wavefront sensor | Holographic lenses | Volume holography | Resolution | Convolution theorem
Área/s de conocimiento: Óptica
Fecha de creación: 10-feb-2023
Fecha de publicación: 27-mar-2023
Editor: RIAO/OPTILAS
Cita bibliográfica: Lloret, T., Morales-Vidal, M., García-Vázquez, J.C., Nieto-Rodríguez, B., Ramírez, M.G., Navarro-Fuster, V., Pascual, I., "Shack-Hartmann wavefront sensor applications in holographic imaging systems". Abstract book of the 11th Iberoamerican Optics Meeting/14th Latinamerican Meeting on Optics, Lasers and Applications, RIAO/OPTILAS 2023, San José, Costa Rica, 27-31 March 2023
Resumen: Nowadays, the Shack-Hartmann (SH) wavefront sensor is one of the most versatile instruments in the field of optics and photonics. Its main applications are in astronomy and vision sciences, but it can be used in any device requiring image quality control and enhancement. In this work, the SH wavefront sensor has been used to characterize, optimize, and study the quality of different holographic lens (HL) types. HLs are one of the most widely used holographic optical elements (HOEs) in use today. They are often used as imaging systems in devices such as head-mounted displays for virtual and augmented reality, or as non-imaging systems in deflectors and light concentrators. In this work, the optical quality, image quality, and object-image similarity of negative holographic lenses recorded in a low-toxicity photopolymer (Biophotopol) have been studied theoretically and experimentally, using a laser emitting at 488 nm and in 200 μm thick layers. In the reconstruction stage with the SH wavefront sensor, two different lasers have been used, one closer to the recording wavelength, 473 nm, and the other further away, 633 nm. In addition, the impulse response of the optical system has also been studied theoretically, which in this case, when working with coherent light, is the amplitude spread function (ASF). Using the SH wavefront sensor, the Zernike coefficients have been obtained for each of the HLs; the aberrations (spherical aberration, coma, and astigmatism) have been studied, comparing them with the theoretical values predicted by Seidel's aberration theory; and the similarity between object and image has been studied using the Convolution Theorem. Finally, the resolution of the HLs has been obtained using the simulated images obtained by convolution.
Patrocinador/es: This research was funded by Universidad de Alicante (UAFPU20-23); Generalitat Valenciana (CIDEXG/2022/60, CDEIGENT/2018/024, IDIFEDER/2021/014, PROMETEO/2021/006); Ministerio de Ciencia e Innovación (PID2019-106601RB-I00).
URI: http://hdl.handle.net/10045/134992
Idioma: eng
Tipo: info:eu-repo/semantics/conferenceObject
Derechos: © The authors
Revisión científica: si
Aparece en las colecciones:INV - GHPO - Comunicaciones a Congresos, Conferencias, etc.

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailRiaoOptilas2023_paper_2651.pdfComunicación188,69 kBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.