Benchmarking DFT Functionals for Excited-State Calculations of Donor–Acceptor TADF Emitters: Insights on the Key Parameters Determining Reverse Inter-System Crossing

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/134882
Información del item - Informació de l'item - Item information
Título: Benchmarking DFT Functionals for Excited-State Calculations of Donor–Acceptor TADF Emitters: Insights on the Key Parameters Determining Reverse Inter-System Crossing
Autor/es: Hall, David | Sancho-Garcia, Juan-Carlos | Pershin, Anton | Beljonne, David | Zysman-Colman, Eli | Olivier, Yoann
Grupo/s de investigación o GITE: Química Cuántica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física
Palabras clave: Thermally Activated Delayed Fluorescence | Time-Dependent Density Functional Theory | Excited State Analysis | Coupled Cluster
Fecha de publicación: 17-may-2023
Editor: American Chemical Society
Cita bibliográfica: The Journal of Physical Chemistry A. 2023, 127(21): 4743-4757. https://doi.org/10.1021/acs.jpca.2c08201
Resumen: The importance of intermediate triplet states and the nature of excited states has gained interest in recent years for the thermally activated delayed fluorescence (TADF) mechanism. It is widely accepted that simple conversion between charge transfer (CT) triplet and singlet excited states is too crude, and a more complex route involving higher-lying locally excited triplet excited states has to be invoked to witness the magnitude of the rate of reverse inter-system crossing (RISC) rates. The increased complexity has challenged the reliability of computational methods to accurately predict the relative energy between excited states as well as their nature. Here, we compare the results of widely used density functional theory (DFT) functionals, CAM-B3LYP, LC-ωPBE, LC-ω*PBE, LC-ω*HPBE, B3LYP, PBE0, and M06-2X, against a wavefunction-based reference method, Spin-Component Scaling second-order approximate Coupled Cluster (SCS-CC2), in 14 known TADF emitters possessing a diversity of chemical structures. Overall, the use of the Tamm–Dancoff Approximation (TDA) together with CAM-B3LYP, M06-2X, and the two ω-tuned range-separated functionals LC-ω*PBE and LC-ω*HPBE demonstrated the best agreement with SCS-CC2 calculations in predicting the absolute energy of the singlet S1, and triplet T1 and T2 excited states and their energy differences. However, consistently across the series and irrespective of the functional or the use of TDA, the nature of T1 and T2 is not as accurately captured as compared to S1. We also investigated the impact of the optimization of S1 and T1 excited states on ΔEST and the nature of these states for three different functionals (PBE0, CAM-B3LYP, and M06-2X). We observed large changes in ΔEST using CAM-B3LYP and PBE0 functionals associated with a large stabilization of T1 with CAM-B3LYP and a large stabilization of S1 with PBE0, while ΔEST is much less affected considering the M06-2X functional. The nature of the S1 state barely evolves after geometry optimization essentially because this state is CT by nature for the three functionals tested. However, the prediction of the T1 nature is more problematic since these functionals for some compounds interpret the nature of T1 very differently. SCS-CC2 calculations on top of the TDA-DFT optimized geometries lead to a large variation in terms of ΔEST and the excited-state nature depending on the chosen functionals, further stressing the large dependence of the excited-state features on the excited-state geometries. The presented work highlights that despite good agreement of energies, the description of the exact nature of the triplet states should be undertaken with caution.
Patrocinador/es: The St Andrews team would like to thank the Leverhulme Trust (RPG-2016-047) for financial support. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifiques de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11, as well as the Tier-1 supercomputer of the Fédération Wallonie–Bruxelles, infrastructure funded by the Walloon Region under the Grant Agreement n1117545. Y.O. acknowledges funding by the Fonds de la Recherche Scientifique-FNRS under Grant no. F.4534.21 (MIS-IMAGINE). D.B. is a FNRS Research Director. J.C.S.-G. acknowledges funding from the “Ministerio de Ciencia e Innovación” through the PID2019-106114GB-I00 project.
URI: http://hdl.handle.net/10045/134882
ISSN: 1089-5639 (Print) | 1520-5215 (Online)
DOI: 10.1021/acs.jpca.2c08201
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2023 American Chemical Society
Revisión científica: si
Versión del editor: https://doi.org/10.1021/acs.jpca.2c08201
Aparece en las colecciones:INV - QC - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailHall_etal_2023_JPhysChemA_final.pdfVersión final (acceso restringido)7,44 MBAdobe PDFAbrir    Solicitar una copia
ThumbnailHall_etal_2023_JPhysChemA_preprint.pdfPreprint (acceso abierto)1,67 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.