Molecular dynamics simulation of surface phenomena due to high electronic excitation ion irradiation in amorphous silica

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/131815
Información del item - Informació de l'item - Item information
Título: Molecular dynamics simulation of surface phenomena due to high electronic excitation ion irradiation in amorphous silica
Autor/es: Prada, Alejandro | Sánchez-Pérez, Francisco | Bailly-Grandvaux, Mathieu | Bringa, Eduardo M. | Caturla, Maria J. | Perlado, José M. | Kohanoff, Jorge | Peña-Rodríguez, Ovidio | Rivera, Antonio
Grupo/s de investigación o GITE: Grupo de Nanofísica | Física de la Materia Condensada
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Amorphous silica | Molecular dynamics simulation | Surface phenomena | High electronic excitation | Ion irradiation
Fecha de publicación: 1-feb-2023
Editor: Springer Nature
Cita bibliográfica: The European Physical Journal D. 2023, 77:18. https://doi.org/10.1140/epjd/s10053-022-00568-3
Resumen: We studied by means of an atomistic model based on molecular dynamics the thermal evolution of surface atoms in amorphous silica under high electronic excitation produced by irradiation with swift heavy ions. The model was validated with the total and differential yields measured in sputtering experiments with different ions and ion energies showing a very good quantitative prediction capability. Three mechanisms are behind the evolution of the surface region: (1) an ejection mechanism of atoms and clusters with kinetic energy exceeding their binding energy to the sample surface, which explains the experimentally observed angular distributions of emitted atoms, and the correlation of the total sputtering yield with the electronic stopping power and the incidence angle. (2) A collective mechanism of the atoms in the ion track originated by the initial atom motion outwards the track region subsequently followed by the return to the resulting low-density region in the track center. The collective mechanism describes the energy dissipation of bulk atoms and the changes in density, residual stress, defect formation and optical properties. (3) A flow mechanism resulting from the accumulation and subsequent evolution of surface atoms unable to escape. This mechanism is responsible for the crater rim formation.
Patrocinador/es: Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work was funded by the projects Radiafus-5 (PID2019-105325RB-C32) of Spanish Ministry of Science, Technofusion (S2018/EMT-4437) of Madrid Regional Government and Eurofusion (EH150531176). The authors acknowledge the computer resources and technical assistance provided by the Centro de Supercomputación y Visualización de Madrid (CeSViMa) CESVIMA-MAGERIT. AP acknowledges the support of FONDECYT under grants 3190123. EMB thanks support from grant ANPCyT PICTO-UUMM-2019-00048. JK was supported by the Beatriz Galindo Program (BEAGAL18/00130) from the Ministerio de Educación y Formación Profesional of Spain.
URI: http://hdl.handle.net/10045/131815
ISSN: 1434-6060 (Print) | 1434-6079 (Online)
DOI: 10.1140/epjd/s10053-022-00568-3
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Revisión científica: si
Versión del editor: https://doi.org/10.1140/epjd/s10053-022-00568-3
Aparece en las colecciones:INV - Física de la Materia Condensada - Artículos de Revistas
INV - Grupo de Nanofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailPrada_etal_2023_EurPhysJD.pdf1,79 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons