Inverse kinetic isotope effects in the oxygen reduction reaction at platinum single crystals

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/129283
Información del item - Informació de l'item - Item information
Título: Inverse kinetic isotope effects in the oxygen reduction reaction at platinum single crystals
Autor/es: Yang, Yao | Agarwal, Rishi G. | Hutchison, Phillips | Rizo, Rubén | Soudackov, Alexander V. | Lu, Xinyao | Herrero, Enrique | Feliu, Juan M. | Hammes-Schiffer, Sharon | Mayer, James M. | Abruña, Héctor D.
Grupo/s de investigación o GITE: Electroquímica de Superficies
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Oxygen reduction reaction | Platinum single crystals | Kinetic isotope effects
Fecha de publicación: 10-nov-2022
Editor: Springer Nature
Cita bibliográfica: Nature Chemistry. 2023, 15: 271-277. https://doi.org/10.1038/s41557-022-01084-y
Resumen: Although the oxygen reduction reaction (ORR) involves multiple proton-coupled electron transfer processes, early studies reported the absence of kinetic isotope effects (KIEs) on polycrystalline platinum, probably due to the use of unpurified D2O. Here we developed a methodology to prepare ultra-pure D2O, which is indispensable for reliably investigating extremely surface-sensitive platinum single crystals. We find that Pt(111) exhibits much higher ORR activity in D2O than in H2O, with potential-dependent inverse KIEs of ~0.5, whereas Pt(100) and Pt(110) exhibit potential-independent inverse KIEs of ~0.8. Such inverse KIEs are closely correlated to the lower *OD coverage and weakened *OD binding strength relative to *OH, which, based on theoretical calculations, are attributed to the differences in their zero-point energies. This study suggests that the competing adsorption between *OH/*OD and *O2 probably plays an important role in the ORR rate-determining steps that involve a chemical step preceding an electrochemical step (CE mechanism).
Patrocinador/es: This work was primarily supported by the Center for Alkaline-Based Energy Solutions (CABES), part of the Energy Frontier Research Center (EFRC) program supported by the US Department of Energy, under grant no. DE-SC-0019445. R.G.A. and J.M.M. acknowledge funding from the Molecular Electrochemistry Multi-University Research Initiative (MURI) supported by the US Air Force Office of Scientific Research, under grant nos. FA9550-18-1-0420; the US National Science Foundation award no. CHE-1904813 for support; and a supplement that supported R.G.A’s visit to the Koper laboratory in Leiden. P.H. and R.G. A acknowledge support from National Science Foundation Graduate Research Fellowships. R.R, E.H and J.M.F. acknowledge funding from Ministerio de Ciencia e Innovación (Spain) under grant no. PID2019-105653GB-I00. R.G.A. would also like to thank M. Koper and the members of his laboratory for their hospitality during his short stay in Leiden, and for introducing him to the challenges of preparing high-purity D2O.
URI: http://hdl.handle.net/10045/129283
ISSN: 1755-4330 (Print) | 1755-4349 (Online)
DOI: 10.1038/s41557-022-01084-y
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 Springer Nature Limited
Revisión científica: si
Versión del editor: https://doi.org/10.1038/s41557-022-01084-y
Aparece en las colecciones:INV - EQSUP - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailYang_etal_2023_NatChem_final.pdfVersión final (acceso restringido)2,45 MBAdobe PDFAbrir    Solicitar una copia
ThumbnailYang_etal_2023_NatChem_preprint.pdfPreprint (acceso abierto)1,1 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.