Use of Chitosan as Copper Binder in the Continuous Electrochemical Reduction of CO2 to Ethylene in Alkaline Medium

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/126381
Información del item - Informació de l'item - Item information
Título: Use of Chitosan as Copper Binder in the Continuous Electrochemical Reduction of CO2 to Ethylene in Alkaline Medium
Autor/es: Marcos-Madrazo, Aitor | Casado-Coterillo, Clara | Iniesta, Jesus | Irabien, Ángel
Grupo/s de investigación o GITE: Electroquímica Aplicada y Electrocatálisis
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Alkaline medium | CO2 electro reduction | Chitosan | Copper | Ethylene production
Fecha de publicación: 15-ago-2022
Editor: MDPI
Cita bibliográfica: Marcos-Madrazo A, Casado-Coterillo C, Iniesta J, Irabien A. Use of Chitosan as Copper Binder in the Continuous Electrochemical Reduction of CO2 to Ethylene in Alkaline Medium. Membranes. 2022; 12(8):783. https://doi.org/10.3390/membranes12080783
Resumen: This work explores the potential of novel renewable materials in electrode fabrication for the electrochemical conversion of carbon dioxide (CO2) to ethylene in alkaline media. In this regard, the use of the renewable chitosan (CS) biopolymer as ion-exchange binder of the copper (Cu) electrocatalyst nanoparticles (NPs) is compared with commercial anion-exchange binders Sustainion and Fumion on the fabrication of gas diffusion electrodes (GDEs) for the electrochemical reduction of carbon dioxide (CO2R) in an alkaline medium. They were tested in membrane electrode assemblies (MEAs), where selectivity to ethylene (C2H4) increased when using the Cu:CS GDE compared to the Cu:Sustainion and Cu:Fumion GDEs, respectively, with a Faradaic efficiency (FE) of 93.7% at 10 mA cm−2 and a cell potential of −1.9 V, with a C2H4 production rate of 420 µmol m−2 s−1 for the Cu:CS GDE. Upon increasing current density to 90 mA cm−2, however, the production rate of the Cu:CS GDE rose to 509 µmol/m2s but the FE dropped to 69% due to increasing hydrogen evolution reaction (HER) competition. The control of mass transport limitations by tuning up the membrane overlayer properties in membrane coated electrodes (MCE) prepared by coating a CS-based membrane over the Cu:CS GDE enhanced its selectivity to C2H4 to a FE of 98% at 10 mA cm−2 with negligible competing HER. The concentration of carbon monoxide was below the experimental detection limit irrespective of the current density, with no CO2 crossover to the anodic compartment. This study suggests there may be potential in sustainable alernatives to fossil-based or perfluorinated materials in ion-exchange membrane and electrode fabrication, which constitute a step forward towards decarbonization in the circular economy perspective.
Patrocinador/es: This research was funded by the Spanish Ministry for Science and Innovation, grant numbers PID2019-108136RB-C31, PID2019-108136RB-C32, PID2020-112845RB-I00 and EIN2020-112319. A.M.M. also acknowledges the Ministry for the Early Stage researcher contract (FPI grant no. BES-2017-080795).
URI: http://hdl.handle.net/10045/126381
ISSN: 2077-0375
DOI: 10.3390/membranes12080783
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.3390/membranes12080783
Aparece en las colecciones:INV - LEQA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailMarcos-Madrazo_etal_2022_Membranes.pdf1,51 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons