Surface-Enriched Boron-Doped TiO2 Nanoparticles as Photocatalysts for Propene Oxidation

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/126188
Información del item - Informació de l'item - Item information
Título: Surface-Enriched Boron-Doped TiO2 Nanoparticles as Photocatalysts for Propene Oxidation
Autor/es: Cano-Casanova, Laura | Ansón Casaos, Alejandro | Hernández Ferrer, Javier | Benito, Ana M. | Maser, Wolfgang K. | Garro, Núria | Lillo-Rodenas, Maria Angeles | Román-Martínez, M. Carmen
Grupo/s de investigación o GITE: Materiales Carbonosos y Medio Ambiente
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Photocatalysis | Titanium dioxide | Boron | Interstitial doping | Propene oxidation | Photoelectrochemical characterization
Fecha de publicación: 24-ago-2022
Editor: American Chemical Society
Cita bibliográfica: ACS Applied Nano Materials. 2022, 5(9): 12527-12539. https://doi.org/10.1021/acsanm.2c02217
Resumen: A series of nanostructured boron-TiO2 photocatalysts (B-X-TiO2-T) were prepared by sol–gel synthesis using titanium tetraisopropoxide and boric acid. The effects of the synthesis variables, boric acid amount (X) and crystallization temperature (T), on structural and electronic properties and on the photocatalytic performance for propene oxidation, are studied. This reaction accounts for the remediation of pollution caused by volatile organic compounds, and it is carried out at low concentrations, a case in which efficient removal techniques are difficult and costly to implement. The presence of boric acid during the TiO2 synthesis hinders the development of rutile without affecting the textural properties. X-ray photoelectron spectroscopy analysis reveals the interstitial incorporation of boron into the surface lattice of the TiO2 nanostructure, while segregation of B2O3 occurs in samples with high boron loading, also confirmed by X-ray diffraction. The best-performing photocatalysts are those with the lowest boron loading. Their high activity, outperforming the equivalent sample without boron, can be attributed to a high anatase and surface hydroxyl group content and efficient photo-charge separation (photoelectrochemical characterization, PEC), which can explain the suppression of visible photoluminescence (PL). Crystallization at 450 °C renders the most active sample, likely due to the development of a pure anatase structure with a large surface boron enrichment. A shift in the wavelength-dependent activity profile (PEC data) and the lowest electron–hole recombination rate (PL data) are also observed for this sample.
Patrocinador/es: The authors thank funding to the Spanish Ministry of Science, Innovation and Universities and FEDER, project of reference RTI2018-095291-B-I00, GV/FEDER (PROMETEO/2018/076), and University of Alicante (VIGROB-136) for financial support. Financial support from Spanish MICINN/AEI under projects PID2019-104272RB-C51/AEI/10.13039/501100011033 and PID2019-104272RB-C53/AEI/10.13039/501100011033 and the Diputación General de Aragón under project T03_20R (Grupo Reconocido) is acknowledged.
URI: http://hdl.handle.net/10045/126188
ISSN: 2574-0970
DOI: 10.1021/acsanm.2c02217
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 The Authors. Published by American Chemical Society. Creative Commons Attribution 4.0 International License (CC BY 4.0)
Revisión científica: si
Versión del editor: https://doi.org/10.1021/acsanm.2c02217
Aparece en las colecciones:INV - MCMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailCano-Casanova_etal_2022_ACSApplNanoMater.pdf3,36 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons