Ultrasmall, Coating-Free, Pyramidal Platinum Nanoparticles for High Stability Fuel Cell Oxygen Reduction

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/125939
Información del item - Informació de l'item - Item information
Título: Ultrasmall, Coating-Free, Pyramidal Platinum Nanoparticles for High Stability Fuel Cell Oxygen Reduction
Autor/es: Mastronardi, Valentina | Magliocca, Emanuele | Solla-Gullón, José | Brescia, Rosaria | Pompa, Pier Paolo | Miller, Thomas S. | Moglianetti, Mauro
Grupo/s de investigación o GITE: Electroquímica Aplicada y Electrocatálisis
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Single-crystal Pt pyramidal nanocatalysts | {111} surface domains | Oxygen reduction reaction | Full polymer electrolyte membrane fuel cells (PEMFCs) | Durability | Aggregation/corrosion resistance
Fecha de publicación: 3-ago-2022
Editor: American Chemical Society
Cita bibliográfica: ACS Applied Materials & Interfaces. 2022, 14(32): 36570-36581. https://doi.org/10.1021/acsami.2c07738
Resumen: Ultrasmall (<5 nm diameter) noble metal nanoparticles with a high fraction of {111} surface domains are of fundamental and practical interest as electrocatalysts, especially in fuel cells; the nanomaterial surface structure dictates its catalytic properties, including kinetics and stability. However, the synthesis of size-controlled, pure Pt-shaped nanocatalysts has remained a formidable chemical challenge. There is an urgent need for an industrially scalable method for their production. Here, a one-step approach is presented for the preparation of single-crystal pyramidal nanocatalysts with a high fraction of {111} surface domains and a diameter below 4 nm. This is achieved by harnessing the shape-directing effect of citrate molecules, together with the strict control of oxidative etching while avoiding polymers, surfactants, and organic solvents. These catalysts exhibit significantly enhanced durability while, providing equivalent current and power densities to highly optimized commercial Pt/C catalysts at the beginning of life (BOL). This is even the case when they are tested in full polymer electrolyte membrane fuel cells (PEMFCs), as opposed to rotating disk experiments that artificially enhance electrode kinetics and minimize degradation. This demonstrates that the {111} surface domains in pyramidal Pt nanoparticles (as opposed to spherical Pt nanoparticles) can improve aggregation/corrosion resistance in realistic fuel cell conditions, leading to a significant improvement in membrane electrode assembly (MEA) stability and lifetime.
URI: http://hdl.handle.net/10045/125939
ISSN: 1944-8244 (Print) | 1944-8252 (Online)
DOI: 10.1021/acsami.2c07738
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 American Chemical Society
Revisión científica: si
Versión del editor: https://doi.org/10.1021/acsami.2c07738
Aparece en las colecciones:INV - LEQA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailMastronardi_etal_2022_ACSApplMaterInterfaces_final.pdfVersión final (acceso restringido)6,89 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.