Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/123199
Información del item - Informació de l'item - Item information
Título: Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies
Autor/es: Yang, Yao | Peltier, Cheyenne R. | Zeng, Rui | Schimmenti, Roberto | Li, Qihao | Huang, Xin | Yan, Zhifei | Potsi, Georgia | Selhorst, Ryan | Lu, Xinyao | Xu, Weixuan | Tader, Mariel | Soudackov, Alexander V. | Zhang, Hanguang | Krumov, Mihail | Murray, Ellen | Xu, Pengtao | Hitt, Jeremy | Xu, Linxi | Ko, Hsin-Yu | Ernst, Brian G. | Bundschu, Colin | Luo, Aileen | Markovich, Danielle | Hu, Meixue | He, Cheng | Wang, Hongsen | Fang, Jiye | DiStasio Jr., Robert A. | Kourkoutis, Lena F. | Singer, Andrej | Noonan, Kevin J.T. | Xiao, Li | Zhuang, Lin | Pivovar, Bryan S. | Zelenay, Piotr | Herrero, Enrique | Feliu, Juan M. | Suntivich, Jin | Giannelis, Emmanuel P. | Hammes-Schiffer, Sharon | Arias, Tomás | Mavrikakis, Manos | Mallouk, Thomas E. | Brock, Joel D. | Muller, David A. | DiSalvo, Francis J. | Coates, Geoffrey W. | Abruña, Héctor D.
Grupo/s de investigación o GITE: Electroquímica de Superficies
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Electrocatalysis | Alkaline Media | Alkaline Membrane-Based | Energy Technologies
Área/s de conocimiento: Química Física
Fecha de publicación: 8-feb-2022
Editor: American Chemical Society
Cita bibliográfica: Chemical Reviews. 2022, 122(6): 6117-6321. https://doi.org/10.1021/acs.chemrev.1c00331
Resumen: Hydrogen energy-based electrochemical energy conversion technologies offer the promise of enabling a transition of the global energy landscape from fossil fuels to renewable energy. Here, we present a comprehensive review of the fundamentals of electrocatalysis in alkaline media and applications in alkaline-based energy technologies, particularly alkaline fuel cells and water electrolyzers. Anion exchange (alkaline) membrane fuel cells (AEMFCs) enable the use of nonprecious electrocatalysts for the sluggish oxygen reduction reaction (ORR), relative to proton exchange membrane fuel cells (PEMFCs), which require Pt-based electrocatalysts. However, the hydrogen oxidation reaction (HOR) kinetics is significantly slower in alkaline media than in acidic media. Understanding these phenomena requires applying theoretical and experimental methods to unravel molecular-level thermodynamics and kinetics of hydrogen and oxygen electrocatalysis and, particularly, the proton-coupled electron transfer (PCET) process that takes place in a proton-deficient alkaline media. Extensive electrochemical and spectroscopic studies, on single-crystal Pt and metal oxides, have contributed to the development of activity descriptors, as well as the identification of the nature of active sites, and the rate-determining steps of the HOR and ORR. Among these, the structure and reactivity of interfacial water serve as key potential and pH-dependent kinetic factors that are helping elucidate the origins of the HOR and ORR activity differences in acids and bases. Additionally, deliberately modulating and controlling catalyst–support interactions have provided valuable insights for enhancing catalyst accessibility and durability during operation. The design and synthesis of highly conductive and durable alkaline membranes/ionomers have enabled AEMFCs to reach initial performance metrics equal to or higher than those of PEMFCs. We emphasize the importance of using membrane electrode assemblies (MEAs) to integrate the often separately pursued/optimized electrocatalyst/support and membranes/ionomer components. Operando/in situ methods, at multiscales, and ab initio simulations provide a mechanistic understanding of electron, ion, and mass transport at catalyst/ionomer/membrane interfaces and the necessary guidance to achieve fuel cell operation in air over thousands of hours. We hope that this Review will serve as a roadmap for advancing the scientific understanding of the fundamental factors governing electrochemical energy conversion in alkaline media with the ultimate goal of achieving ultralow Pt or precious-metal-free high-performance and durable alkaline fuel cells and related technologies.
Patrocinador/es: This work was supported by the Center for Alkaline-Based Energy Solutions, an Energy Frontier Research Center program supported by the U.S. Department of Energy, under Grant DE-SC0019445. This work acknowledges the long-term support of TEM facilities at the Cornell Center for Materials Research (CCMR) which are supported through the National Science Foundation Materials Research Science and Engineering Center (NSF MRSEC) program (DMR1719875), and Cornell high-energy synchrotron sources (CHESS), which is supported by the National Science Foundation under Award DMR-1332208.
URI: http://hdl.handle.net/10045/123199
ISSN: 0009-2665 (Print) | 1520-6890 (Online)
DOI: 10.1021/acs.chemrev.1c00331
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 American Chemical Society
Revisión científica: si
Versión del editor: https://doi.org/10.1021/acs.chemrev.1c00331
Aparece en las colecciones:INV - EQSUP - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailYang_etal_2022_ChemRev_final.pdfVersión final (acceso restringido)74,33 MBAdobe PDFAbrir    Solicitar una copia
ThumbnailYang_etal_2022_ChemRev_preprint.pdfPreprint (acceso abierto)12,82 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.