Improving the Performance of BaMnO3 Perovskite as Soot Oxidation Catalyst Using Carbon Black during Sol-Gel Synthesis

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/120908
Información del item - Informació de l'item - Item information
Título: Improving the Performance of BaMnO3 Perovskite as Soot Oxidation Catalyst Using Carbon Black during Sol-Gel Synthesis
Autor/es: Torregrosa-Rivero, Verónica | Sánchez-Adsuar, María Salvadora | Illán-Gómez, María José
Grupo/s de investigación o GITE: Materiales Carbonosos y Medio Ambiente
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica
Palabras clave: BaMnO3 perovskite | Diesel soot oxidation | Sol-gel synthesis | Carbon black
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: 10-ene-2022
Editor: MDPI
Cita bibliográfica: Torregrosa-Rivero V, Sánchez-Adsuar M-S, Illán-Gómez M-J. Improving the Performance of BaMnO3 Perovskite as Soot Oxidation Catalyst Using Carbon Black during Sol-Gel Synthesis. Nanomaterials. 2022; 12(2):219. https://doi.org/10.3390/nano12020219
Resumen: A series of BaMnO3 solids (BM-CX) were prepared by a modified sol-gel method in which a carbon black (VULCAN XC-72R), and different calcination temperatures (600–850 °C) were used. The fresh and used catalysts were characterized by ICP-OES, XRD, XPS, FESEM, TEM, O2-TPD and H2- TPR-. The characterization results indicate that the use of low calcination temperatures in the presence of carbon black allows decreasing the sintering effects and achieving some improvements regarding BM reference catalyst: (i) smaller average crystal and particles size, (ii) a slight increase in the BET surface area, (iii) a decrease in the macropores diameter range and, (iv) a lower temperature for the reduction of manganese. The hydrogen consumption confirms Mn(III) and Mn(IV) are presented in the samples, Mn(III) being the main oxidation state. The BM-CX catalysts series shows an improved catalytic performance regarding BM reference catalyst for oxidation processes (NO to NO2 and NO2-assisted soot oxidation), promoting higher stability and higher CO2 selectivity. BM-C700 shows the best catalytic performance, i.e., the highest thermal stability and a high initial soot oxidation rate, which decreases the accumulation of soot during the soot oxidation and, consequently, minimizes the catalyst deactivation.
Patrocinador/es: This research was funded by the Generalitat Valenciana (PROMETEO/2018/076), Spanish Government (PID2019-105542RB-I00) and the EU (FEDER Founding).
URI: http://hdl.handle.net/10045/120908
ISSN: 2079-4991
DOI: 10.3390/nano12020219
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.3390/nano12020219
Aparece en las colecciones:INV - MCMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailTorregrosa-Rivero_etal_2022_Nanomaterials.pdf63,5 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons