Oxygen electroreduction on small (<10 nm) and {100}-oriented Pt nanoparticles

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/119707
Información del item - Informació de l'item - Item information
Título: Oxygen electroreduction on small (<10 nm) and {100}-oriented Pt nanoparticles
Autor/es: Erikson, Heiki | Antoniassi, Rodolfo M. | Solla-Gullón, José | Torresi, Roberto M. | Tammeveski, Kaido | Feliu, Juan M.
Grupo/s de investigación o GITE: Electroquímica Aplicada y Electrocatálisis | Electroquímica de Superficies
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Oxygen reduction reaction | Electrocatalysis | Pt nanocubes | Pt nanoparticles | Supported electrocatalyst
Área/s de conocimiento: Química Física
Fecha de publicación: 24-nov-2021
Editor: Elsevier
Cita bibliográfica: Electrochimica Acta. 2022, 403: 139631. https://doi.org/10.1016/j.electacta.2021.139631
Resumen: Oxygen reduction reaction (ORR) was studied on {100}-oriented Pt nanoparticles with sizes 3 to 7 nm in sulphuric acid solution. The distribution and size of nanoparticles was analysed by transmission electron microscopy and metal loading was determined by inductively coupled plasma optical emission spectroscopy. The synthesised nanoparticles have about 40% of Pt(100) facet and 10% Pt(111) as determined from Ge and Bi adsorption, respectively. The four Pt/C catalysts with metal loading from 25 to 38 wt% were tested for ORR activity in 0.5 M H2SO4 solution using the rotating disk electrode method. It was found that the ORR proceeds mainly via a 4-electron pathway with the rate-limiting step being the transfer of the first electron to O2 molecule. The mass activities for ORR increase with decreasing the particle size, but specific activity and mass-specific activity have a maximum at 4.6 nm particle size. This means the most optimal {100}-oriented Pt size for ORR is around 4.6 nm in sulphuric acid solution.
Patrocinador/es: This paper was performed under Ministerio de Ciencia e Innovación-FEDER (Spain) Project PID2019-105653GB-100 and Generalitat Valenciana (Project PROMETEO/2020/063). R.M.A and R.M.T thank to the support from FAPESP, Procs. 2019/ 08051-0, 2017/15469-5 and 15/26308-7. H.E. thanks the Estonian Research Council (grant No PUTJD841). This research was also supported by the EU through the European Regional Development Fund (TK141 “Advanced materials and high-technology devices for energy recuperation systems”).
URI: http://hdl.handle.net/10045/119707
ISSN: 0013-4686 (Print) | 1873-3859 (Online)
DOI: 10.1016/j.electacta.2021.139631
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2021 Elsevier Ltd.
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.electacta.2021.139631
Aparece en las colecciones:INV - EQSUP - Artículos de Revistas
INV - LEQA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailErikson_etal_2021_ElectrochimActa_accepted.pdfAccepted Manuscript (acceso abierto)1,77 MBAdobe PDFAbrir Vista previa
ThumbnailErikson_etal_2021_ElectrochimActa_final.pdfVersión final (acceso restringido)1,83 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.