Towards Understanding the Interconnection between Celestial Pole Motion and Earth’s Magnetic Field Using Space Geodetic Techniques

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/119543
Información del item - Informació de l'item - Item information
Título: Towards Understanding the Interconnection between Celestial Pole Motion and Earth’s Magnetic Field Using Space Geodetic Techniques
Autor/es: Modiri, Sadegh | Heinkelmann, Robert | Belda, Santiago | Malkin, Zinovy | Hoseini, Mostafa | Korte, Monika | Ferrandiz, Jose M. | Schuh, Harald
Grupo/s de investigación o GITE: Geodesia Espacial y Dinámica Espacial
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Matemática Aplicada
Palabras clave: Celestial pole offset | Geomagnetic field | VLBI
Área/s de conocimiento: Matemática Aplicada
Fecha de publicación: 13-nov-2021
Editor: MDPI
Cita bibliográfica: Modiri S, Heinkelmann R, Belda S, Malkin Z, Hoseini M, Korte M, Ferrándiz JM, Schuh H. Towards Understanding the Interconnection between Celestial Pole Motion and Earth’s Magnetic Field Using Space Geodetic Techniques. Sensors. 2021; 21(22):7555. https://doi.org/10.3390/s21227555
Resumen: The understanding of forced temporal variations in celestial pole motion (CPM) could bring us significantly closer to meeting the accuracy goals pursued by the Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG), i.e., 1 mm accuracy and 0.1 mm/year stability on global scales in terms of the Earth orientation parameters. Besides astronomical forcing, CPM excitation depends on the processes in the fluid core and the core–mantle boundary. The same processes are responsible for the variations in the geomagnetic field (GMF). Several investigations were conducted during the last decade to find a possible interconnection of GMF changes with the length of day (LOD) variations. However, less attention was paid to the interdependence of the GMF changes and the CPM variations. This study uses the celestial pole offsets (CPO) time series obtained from very long baseline interferometry (VLBI) observations and data such as spherical harmonic coefficients, geomagnetic jerk, and magnetic field dipole moment from a state-of-the-art geomagnetic field model to explore the correlation between them. In this study, we use wavelet coherence analysis to compute the correspondence between the two non-stationary time series in the time–frequency domain. Our preliminary results reveal interesting common features in the CPM and GMF variations, which show the potential to improve the understanding of the GMF’s contribution to the Earth’s rotation. Special attention is given to the corresponding signal between FCN and GMF and potential time lags between geomagnetic jerks and rotational variations.
Patrocinador/es: J.M.F was partially supported by Spanish Projects PID2020-119383GB-I00 (AEI/FEDER, UE) and PROMETEO/2021/030 (Generalitat Valenciana). S.B was supported by the Generalitat Valenciana SEJIGENT program (SEJIGENT/2021/001) and by the European Research Council (ERC) under the ERC2017-STG SENTIFLEX project (Grant Agreement 755617).
URI: http://hdl.handle.net/10045/119543
ISSN: 1424-8220
DOI: 10.3390/s21227555
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.3390/s21227555
Aparece en las colecciones:INV - GEDE - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailModiri_etal_2021_Sensors.pdf5,09 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons