Cement mortar cracking under accelerated steel corrosion test: A mechanical and electrochemical model

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/117552
Información del item - Informació de l'item - Item information
Título: Cement mortar cracking under accelerated steel corrosion test: A mechanical and electrochemical model
Autor/es: Segovia-Eulogio, Enrique-Gonzalo | Vera Almenar, Guillem de | Miró, Marina | Ramis-Soriano, Jaime | Climent, Miguel-Ángel
Grupo/s de investigación o GITE: Grupo de Ensayo, Simulación y Modelización de Estructuras (GRESMES) | Acústica Aplicada | Durabilidad de Materiales y Construcciones en Ingeniería y Arquitectura
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Civil | Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal
Palabras clave: Cracking | Non-uniform corrosion | Corrosion test | Mechanical model | Electrochemical model | Mortar
Área/s de conocimiento: Mecánica de Medios Contínuos y Teoría de Estructuras | Ingeniería de la Construcción | Física Aplicada
Fecha de publicación: 1-sep-2021
Editor: Elsevier
Cita bibliográfica: Journal of Electroanalytical Chemistry. 2021, 896: 115222. https://doi.org/10.1016/j.jelechem.2021.115222
Resumen: Corrosion of the embedded steel is one of the main degradation problems limiting the service life of reinforced and pre-stressed concrete structures. A model able to provide approximate predictions of the evolution of the cracking process can be useful for designing accelerated corrosion tests of reinforced cement mortar or concrete specimens. An electrochemical model has been used for describing the inner displacements and strains caused by the accumulation of steel corrosion products around the rebar during electrically accelerated corrosion tests of reinforced cement mortar specimens with simple geometries. Subsequently, a mechanical model using the XFEM-Based Crack Growth Simulation module of Ansys Software, has been implemented to describe the distribution of stresses in the cross-section of the specimens. The combined electrochemical and mechanical model has led to acceptable predictions of the time to appearance of the first surface crack and the evolution of crack width over time. This combined model, which needs only data of a few experimental parameters, and uses only readily accessible standard software, could easily be implemented with other experimental configurations. For a more realistic description of the distribution of the tensile stresses and of the whole cracking process, the model must consider the initiation of several cracks, at least eight, around the rebar perimeter. The inclusion in the model of higher number of cracks increases greatly the computation time and effort, and may lead to convergence difficulties.
Patrocinador/es: This research was funded by the Spanish Agencia Estatal de Investigación (Grant code BIA2016-80982-R) and by the European Regional Development Fund (Grant code BIA2016-80982-R).
URI: http://hdl.handle.net/10045/117552
ISSN: 1572-6657 (Print) | 1572-6657 (Online)
DOI: 10.1016/j.jelechem.2021.115222
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.jelechem.2021.115222
Aparece en las colecciones:INV - GRESMES - Artículos de Revistas
INV - Acústica Aplicada - Artículos de Revistas
INV - DMCIA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailSegovia_etal_JElectroanalChem_final.pdf2,43 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.