Mathematical Modeling of Preferential CO Oxidation Reactions under Advection–Diffusion Conditions in a 3D-Printed Reactive Monolith

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/117541
Registro completo de metadatos
Registro completo de metadatos
Campo DCValorIdioma
dc.contributorMateriales Carbonosos y Medio Ambientees_ES
dc.contributor.authorAguilar-Madera, Carlos G.-
dc.contributor.authorOcampo-Pérez, Raúl-
dc.contributor.authorBailón-García, Esther-
dc.contributor.authorHerrera-Hernández, E.C.-
dc.contributor.authorChaparro-Garnica, Cristian Yesid-
dc.contributor.authorDavó-Quiñonero, Arantxa-
dc.contributor.authorLozano-Castello, Dolores-
dc.contributor.authorBueno López, Agustín-
dc.contributor.authorGarcía-Hernández, Elías-
dc.contributor.otherUniversidad de Alicante. Departamento de Química Inorgánicaes_ES
dc.date.accessioned2021-09-03T18:17:30Z-
dc.date.available2021-09-03T18:17:30Z-
dc.date.issued2021-08-01-
dc.identifier.citationIndustrial & Engineering Chemistry Research. 2021, 60(31): 11689-11698. https://doi.org/10.1021/acs.iecr.1c01483es_ES
dc.identifier.issn0888-5885 (Print)-
dc.identifier.issn1520-5045 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/117541-
dc.description.abstractIn this study, the preferential CO oxidation (CO-PROX) reaction is simulated under advection–diffusion conditions in a CuO/CeO2 catalyst-supported monolith built by 3D-printing. The simulation incorporates the mass balances in the bulk of the fluid, the momentum balance, and the heterogeneous chemical reactions. In the monolith constricted channels, the fluid velocity is 80% larger than in the wider channels. Three reactive regimes are identified: the CO oxidation-dominated regime governing up to 85 °C and the early and late transition regimes where the H2 oxidation eventually increases. Up to 175 °C, a H2 oxidation-dominated reactive regime was not identified. The simulation accurately predicts experimental results of CO conversion and selectivity in the range from 25 to 175 °C. A sensitivity analysis demonstrates that the composition of gas mixture fed significantly affects the ratio of reaction rates and, consequently, the CO conversion and CO selectivity; meanwhile, the rate of gas injection yields moderate changes in reactivity.es_ES
dc.languageenges_ES
dc.publisherAmerican Chemical Societyes_ES
dc.rights© 2021 American Chemical Societyes_ES
dc.subjectMathematical modelinges_ES
dc.subjectPreferential CO oxidation reactionses_ES
dc.subjectAdvection-diffusion conditionses_ES
dc.subject3D-printed reactive monolithes_ES
dc.subject.otherQuímica Inorgánicaes_ES
dc.titleMathematical Modeling of Preferential CO Oxidation Reactions under Advection–Diffusion Conditions in a 3D-Printed Reactive Monolithes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1021/acs.iecr.1c01483-
dc.relation.publisherversionhttps://doi.org/10.1021/acs.iecr.1c01483es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses_ES
Aparece en las colecciones:INV - MCMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailAguilar-Madera_etal_2021_IndEngChemRes_final.pdfVersión final (acceso restringido)4,85 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.