Isotopic study of the influence of oxygen interaction and surface species over different catalysts on the soot removal mechanism

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/116637
Información del item - Informació de l'item - Item information
Título: Isotopic study of the influence of oxygen interaction and surface species over different catalysts on the soot removal mechanism
Autor/es: Cortés-Reyes, Marina | Martínez-Munuera, Juan Carlos | Herrera, Concepción | Larrubia, M. Ángeles | Alemany, Luis J. | Garcia-Garcia, Avelina
Grupo/s de investigación o GITE: Materiales Carbonosos y Medio Ambiente
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Soot removal | Mechanism | Oxygen surface species | Isotopic study
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: 12-jul-2021
Editor: Elsevier
Cita bibliográfica: Catalysis Today. 2022, 384-386: 33-44. https://doi.org/10.1016/j.cattod.2021.07.015
Resumen: In order to improve the catalytic formulations for soot removal in after-treatment emission control technologies for gasoline and diesel engine vehicle, an isotopic study was approached using transitory labeled oxygen response method over model catalysts that allows the unraveling of soot oxidation mechanism. Ce-based materials promote oxygen exchange associated with the high population of lattice oxygen species (O2-) denoted as OI type. The incorporation of praseodymium produces a Pr3+ enrichment that decrease the energy for oxygen release and increase oxygen mobility through surface and subsurface oxygen centers (OII type) depending on the synthesis procedure. For PtBaK catalyst, OIII species are responsible for oxygen exchange. Gas-solid reaction between soot and gas phase molecular oxygen is responsible for direct uncatalyzed soot oxidation. For ceria containing catalysts, low-temperature soot removal takes place through the intervention of lattice atomic species and superoxide species. For DPNR model catalyst, PtBaK/Al2O3, the soot elimination occurs with the intervention OIII type centers. In the presence NO, the assisted and cooperative mechanism due to NO2 and the intervention of the adsorbed nitrate species on the trimetallic catalyst enhances soot removal capacity.
Patrocinador/es: MCR acknowledges the postdoctoral fellowship obtained from the University of Malaga. MCR, CH, MAL and LJA want to thank the financial support of CTQ 2017-87909R project. MCR also want to thank the University of Alicante for the financial support for the internship (INV19-07). JCMM and AGG gratefully acknowledge the financial support of Generalitat Valenciana (PROMETEO/2018/076 project) and the Spanish Ministry of Science, Innovation and Universities (PID2019-105542RB-I00 project) and the UE-FEDER funding. JCMM also acknowledges Spanish Ministry of Science, Innovation and Universities for the financial support through a FPU grant (FPU17/00603).
URI: http://hdl.handle.net/10045/116637
ISSN: 0920-5861 (Print) | 1873-4308 (Online)
DOI: 10.1016/j.cattod.2021.07.015
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.cattod.2021.07.015
Aparece en las colecciones:INV - MCMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailCortes-Reyes_etal_2022_CatalysisToday.pdf1,32 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons