Liquid Ammoniates as Efficient Electrolytes for Room-Temperature Rechargeable Sodium-Metal Batteries Based on an Organic Cathode

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/116179
Información del item - Informació de l'item - Item information
Título: Liquid Ammoniates as Efficient Electrolytes for Room-Temperature Rechargeable Sodium-Metal Batteries Based on an Organic Cathode
Autor/es: Ruiz-Martínez, Débora | Lana-Villarreal, Teresa | Gómez, Roberto
Grupo/s de investigación o GITE: Grupo de Fotoquímica y Electroquímica de Semiconductores (GFES)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Palabras clave: Sodium-metal batteries | Room temperature | Organic cathode | Poly(anthraquinonyl sulfide) | Highly concentrated electrolytes | Ammoniates
Área/s de conocimiento: Química Física
Fecha de publicación: 25-jun-2021
Editor: American Chemical Society
Cita bibliográfica: ACS Applied Energy Materials. 2021, 4(7): 6806-6814. https://doi.org/10.1021/acsaem.1c00913
Resumen: The development of room-temperature rechargeable sodium-metal batteries (SMBs) has gathered enormous interest as they are an attractive option to develop cost-effective devices to store energy from renewable sources. However, one of their main constraints is the high reactivity of sodium with most of the electrolytes commonly employed, which hampers finding an optimized SMB configuration. Here, we describe the use of a highly concentrated electrolyte based on liquid ammonia and sodium iodide. Its formulation is NaI·3.3NH3, and it confers metallic sodium high stability at room temperature. Moreover, the electrolyte is significantly more cost-effective than typical organic or ionic liquid electrolytes. Here, the advantages of this electrolyte are shown in a battery based on the combination of sodium metal as an anode and poly(anthraquinonyl sulfide) (PAQS) as a cathode. This combination leads to an experimental capacity of 218 mA·h·g–1 at 5C (reaching 97% of the theoretical capacity) at room temperature and maintains a Coulombic efficiency close to 100% over 300 cycles. In addition, the system described here attains, after 100 cycles, specific energies over 320 W·h·kgPAQS–1 and a specific power of 3500 W·kgPAQS–1, with an energy efficiency over 90%. These metrics, which compare favorably with those of typical organic electrolytes, are linked to an extremely low value of the charge-transfer resistance at the cathode/ammoniate interphase. Despite the dissolution of PAQS during the reduction process, the battery already presents a capacity retention over 80% after 150 cycles at 5C.
Patrocinador/es: This work has been developed in the context of project RTI2018-102061-B-I00 financed by FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación. The Generalitat Valenciana through project PROMETEO/2020/089 is also gratefully acknowledged.
URI: http://hdl.handle.net/10045/116179
ISSN: 2574-0962
DOI: 10.1021/acsaem.1c00913
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2021 American Chemical Society. Creative Commons Attribution 4.0 International License (CC BY 4.0)
Revisión científica: si
Versión del editor: https://doi.org/10.1021/acsaem.1c00913
Aparece en las colecciones:INV - GFES - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailRuiz-Martinez_etal_2021_ACSApplEnergyMater.pdf3,04 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.